Computational Anatomical Animal Models
Methodological developments and research applications
Editorial Advisory Board Members

Frank Verhaegen
Maastricht Clinic, the Netherlands
Alicia El Haj
Keele University, UK

Carmel Caruana
University of Malta, Malta
John Hossack
University of Virginia, USA

Penelope Allisy-Roberts
Formerly of BIPM, Sèvres, France
Tingting Zhu
University of Oxford, UK

Rory Cooper
University of Pittsburgh, USA
Dennis Schaart
TU Delft, the Netherlands

About the Series

Series in Physics and Engineering in Medicine and Biology will allow IPEM to enhance its mission to ‘advance physics and engineering applied to medicine and biology for the public good.’

Focusing on key areas including, but not limited to:

- clinical engineering
- diagnostic radiology
- informatics and computing
- magnetic resonance imaging
- nuclear medicine
- physiological measurement
- radiation protection
- radiotherapy
- rehabilitation engineering
- ultrasound and non-ionising radiation

A number of IPEM-IOP titles are published as part of the EUTEMPE Network Series for Medical Physics Experts.
Computational Anatomical Animal Models
Methodological developments and research applications

Habib Zaidi
Geneva University Hospital, Switzerland
Contents

Editor biography x
List of contributors xi

Part I Computational models

1 Historical development and overview of computational animal models 1-1
 1.1 Introduction 1-1
 1.2 Construction of computational models 1-2
 1.3 Overview of existing computational animal models 1-9
 1.3.1 Mouse models 1-9
 1.3.2 Rat models 1-12
 1.3.3 Models of other animals 1-13
 1.4 Popular simulation tools for computational models 1-14
 1.5 Summary 1-15
 References 1-17

2 Design and construction of computational animal models 2-1
 2.1 Introduction 2-1
 2.2 Mathematical phantoms 2-2
 2.3 Voxel-based phantoms 2-3
 2.4 BREP phantoms 2-6
 2.5 Summary and future perspectives 2-7
 References 2-9

3 Overview of computational mouse models 3-1
 3.1 Introduction 3-1
 3.2 Construction of computational mouse models 3-2
 3.3 History of computational mouse models 3-7
 3.4 Simulation tools used with the computational mouse models 3-9
 3.5 Applications of computational mouse models 3-11
 3.5.1 Ionizing radiation dosimetry 3-11
 3.5.2 Nonionizing radiation dosimetry 3-13
 3.5.3 Medical imaging physics 3-13
 3.6 Summary 3-14
 References 3-16
4 Overview of computational rat models 4-1
4.1 Introduction 4-1
4.2 Overview of existing rat models 4-2
4.3 Development and application of HUST computational rat models 4-5
4.4 Summary 4-10
References 4-12

5 Overview of computational frog models 5-1
5.1 Introduction 5-1
5.2 History and construction of computational frog models 5-3
5.3 Monte Carlo simulations with computational frog models 5-3
 5.3.1 Absorbed fractions and S values for the voxel-based model 5-5
 5.3.2 Dose coefficients (DCs) for the voxel-based model 5-6
 5.3.3 Comparisons between stylized and voxel-based models 5-7
5.4 Summary 5-8
References 5-9

6 Overview of computational canine models 6-1
6.1 Introduction 6-1
6.2 General steps for developing canine models 6-1
 6.2.1 Acquisition of tomographic images 6-2
 6.2.2 Segmentation of organs and tissues 6-2
 6.2.3 Development of 3D whole body models 6-3
6.3 Current status of canine models 6-3
 6.3.1 The University of Florida canine models 6-3
 6.3.2 The NIRAS canine models 6-4
 6.3.3 The Vanderbilt University canine models 6-5
6.4 Summary and future perspectives 6-7
References 6-9

7 Overview of computational rabbit models 7-1
7.1 Introduction 7-1
7.2 Construction of rabbit models 7-2
 7.2.1 Acquisition of CT images 7-2
 7.2.2 Tissue classification from CT images 7-2
7.3 Model refinement 7-3
7.4 Examples of electromagnetic and thermal dosimetry 7-5
7.5 Summary 7-6
References 7-7

8 Overview of other computational animal models 8-1
8.1 Introduction 8-1
8.2 Computational models of trout 8-2
8.3 Computational models of crabs 8-2
8.4 Computational models of flatfish 8-3
8.5 Computational models of bees 8-3
8.6 Computational models of deer 8-4
8.7 Computational models of earthworms 8-4
8.8 Computational models of ducks 8-6
8.9 Computational models of goats 8-6
8.10 Computational models of pigs 8-7
8.11 Computational models of non-human primates 8-7
8.12 Summary 8-8
References 8-8

9 Simulation tools used with preclinical computational models 9-1
9.1 Introduction 9-1
9.2 Tools used for simulation 9-1
9.2.1 Tools used for ionizing radiation simulation 9-1
9.2.2 Tools used for nonionizing radiation simulation 9-3
9.3 The Monte Carlo simulation method 9-3
9.3.1 Monte Carlo simulation of computational phantoms 9-5
9.3.2 Monte Carlo simulation of medical imaging detectors 9-6
9.4 Monte Carlo packages for preclinical studies 9-6
9.4.1 EGS 9-7
9.4.2 Geant4 9-10
9.4.3 MCNP 9-12
9.4.4 PENELOPE 9-13
9.5 Comparison of performance of Monte Carlo packages 9-16
9.5.1 Memory consumption 9-18
Part II Applications in preclinical research

10 Applications of computational animal models in ionizing radiation dosimetry

- **10.1 Introduction**
- **10.2 Fundamentals of radiation dosimetry**
 - 10.2.1 Nuclear medicine dosimetry
 - 10.2.2 Computed tomography (CT) dosimetry
 - 10.2.3 Multimodality (SPECT/CT and PET/CT) dosimetry
- **10.3 Applications in ionizing radiation dosimetry**
 - 10.3.1 Monte Carlo simulations
 - 10.3.2 Dosimetry applications in mouse models
 - 10.3.3 Dosimetry applications in rat models
 - 10.3.4 Dosimetry applications in small animal models
- **10.4 Discussion**

11 Computational animal phantoms for electromagnetic dosimetry

- **11.1 Introduction**
- **11.2 Minimal requirements for EM dosimetry**
 - 11.2.1 Exposure conditions
 - 11.2.2 Animal phantoms
 - 11.2.3 Dosimetric data evaluated
 - 11.2.4 Variation analysis
- **11.3 Methods**
 - 11.3.1 Computational animal phantoms
 - 11.3.2 Segmentation
 - 11.3.3 Poser
- **11.4 Outlook**
- **11.5 Conclusions**
12 Applications of computational animal models in imaging physics research

12.1 Introduction

12.2 Computational animal models in imaging physics

12.3 Applications of computational animal models in imaging physics research
 12.3.1 Imaging systems design and performance evaluation
 12.3.2 Modeling physical image degradation factors and their correction
 12.3.3 Development and evaluation of image reconstruction algorithms
 12.3.4 Quantification of small-animal PET data

12.4 Summary and future directions

References

13 Applications of computational animal models in radiation therapy research

13.1 Introduction

13.2 Design of digital mouse phantoms

13.3 Monte Carlo simulation platforms

13.4 Simulation of head of accelerators and energy spectra
 13.4.1 Linear accelerator x-ray beam
 13.4.2 Calibration of the x-ray beam
 13.4.3 Simulation of the x-ray beam

13.5 Types of absorbed doses calculated in digital mouse models

13.6 Recommendations by collaborative working groups and agencies

13.7 Differences between human organs and digital mouse organs in radiation therapy

13.8 Excerpts of applications in digital mouse radiotherapy/dosimetry

13.9 Conclusions

References

14 Summary and future outlook

14.1 Summary

14.2 Future outlook

14.3 Acknowledgements

References
Habib Zaidi

Professor Habib Zaidi, B.Eng, M.Sc, Ph.D, PD, FIEEE

Professor Habib Zaidi is Chief physicist and head of the PET Instrumentation & Neuroimaging Laboratory at Geneva University Hospital and faculty member at the medical school of Geneva University. He is also a Professor of Medical Physics at the University of Groningen (Netherlands), Adjunct Professor of Medical Physics and Molecular Imaging at the University of Southern Denmark, and visiting Professor at IAS/University Cergy-Pontoise (France). He was guest editor for 10 special issues of peer-reviewed journals and serves on the editorial board of leading journals in medical physics and medical imaging. He has been elevated to the grade of IEEE fellow and was elected liaison representative of the International Organization for Medical Physics (IOMP) to the World Health Organization (WHO). His academic accomplishments in the area of quantitative PET imaging have been well recognized by his peers and by the medical imaging community at large since he is a recipient of many awards and distinctions among which the prestigious 2003 Young Investigator Medical Imaging Science Award given by the Nuclear Medical and Imaging Sciences Technical Committee of the IEEE, the 2004 Mark Tetalman Memorial Award given by the Society of Nuclear Medicine, the 2007 Young Scientist Prize in Biological Physics given by the International Union of Pure and Applied Physics (IUPAP), the prestigious ($100 000) 2010 kuwait Prize of Applied sciences (known as the Middle Eastern Nobel Prize) given by the Kuwait Foundation for the Advancement of Sciences (KFAS), the 2013 John S Laughlin Young Scientist Award given by the American Association of Physicists in Medicine (AAPM), the 2013 Vikram Sarabhai Oration Award given by the Society of Nuclear Medicine, India (SNMI), the 2015 Sir Godfrey Hounsfield Award given by the British Institute of Radiology (BIR) and the 2017 IBA-Europhysics Prize given by the European Physical Society (EPS).

Professor Zaidi has been an invited speaker of over 150 keynote lectures and talks at an international level, has authored over 250 peer-reviewed articles in prominent journals and is the Editor of four textbooks including this volume. Email: habib.zaidi@hcuge.ch; Web: http://pinlab.hcuge.ch/.
List of contributors

Tianwu Xie
Geneva University Hospital, Switzerland

Habib Zaidi
Geneva University Hospital, Switzerland

Paul Segars
Duke University, USA

Akram Mohammadi
National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Japan

Mitra Safavi-Naeini
Australian Nuclear Science and Technology Organisation (ANSTO), Australia

Sakae Kinase
Japan Atomic Energy Agency (JAEA)/Ibaraki University, Japan

Qian Liu
Huazhong University of Science and Technology, China

Guozhi Zhang
University Hospitals Leuven, Belgium

José-María Gómez-Ros
Research Centre for Energy, Environment and Technology, Spain

Choonsik Lee
National Institutes of Health, USA

Kanako Wake
National Institute of Information and Communications Technology, Japan

Akimasa Hirata
Nagoya Institute of Technology, Japan

Kenji Taguchi
Kitami Institute of Technology, Japan
Pedro Arce
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Spain

Juan Ignacio Lagares
Medical Applications Unit, CIEMAT, Spain

Josep Sempau
Department of Physics, Universitat Politecnica de Catalunya, Spain

George Kagadis
University of Patras, Greece

Panagiotis Papadimitroulas
BioEmission Technology Solutions R&D Department, Greece

Niels Kuster
IT’IS Foundation and Swiss Federal Institute of Technology Zurich, Switzerland

Rameshwar Prasad
Rush University Medical Center, USA

M’hamed Bentourkia
Université de Sherbrooke, Canada

Mahdjoub Hamdi
University of Mostaganem, Algeria

Faiçal A Slimani
Université de Sherbrooke, Canada