Études cas-témoin, échantillonnage inclusif, études cas-témoins emboîtés

Genève, avril 2012
Bernard Cerutti PhD MPH
Why a case-control study?

- Rare disease
- Assessment of the exposure is expensive
- Need to inform quickly public health policy makers
The odds ratio
The odds ratio

Odds smokers 75/25 = 3

Odds non smokers 60/140 = 0.43

Odds ratio = 3/0.43 = 7
7 smokers have a cardiovascular disease for every smoker without cardiovascular disease

\[
\frac{P(C \cap F)}{P(F \cap \overline{C})} = \frac{P(F/C) P(C)}{P(F/\overline{C}) P(\overline{C})} = \frac{0.75 P(C)}{0.3 P(\overline{C})}
\]
If you are smoker the probability that you have a cardiovascular is 7 times higher than the one of a non-smoker.

\[
\frac{P(C/F)}{P(C/F)} = \frac{P(F/C)P(C)P(F)}{P(F/C)P(C)P(F)} = \frac{0.75P(C)}{0.3P(C)}
\]
That is and

I can bet 7 against 1 that is a smoker
Fixed and dynamic population, stable population

• Fixed: e.g. birth cohort (Closed)

• Dynamic: affected by births, deaths, immigration, … (Open)

• Stable population: its composition does not change overtime, neither the exposure
Exposed population

- N_E:
 - Initial population
 - py.ar_E:
 - Currently at risk

- C_E:
 - Cases
 - $N_E - C_E$:
 - Still at risk

Unexposed population

- N_U:
 - Initial population
 - py.ar_U:
 - Currently at risk

- C_U:
 - Cases
 - $N_U - C_U$:
 - Still at risk

Start of the study \rightarrow End of the study
A crucial issue: the approach used to identify the cases and the controls!!
Control selected from the person still free of the disease at the end of the study.
Control selected from the person still free of the disease at the end of the study.

- Exclusive design
- Traditional design
- Cumulative design
- Cumulative incidence sampling
- «case-noncase» sampling

- censored
- case
- control
Exposed population

\[N_E \]

\[C_E \]

\[\text{Still at risk } N_E - C_E \]

Unexposed population

\[N_U \]

\[C_U \]

\[\text{Still at risk } N_U - C_U \]

Start of the study

\[\frac{C_E}{(N_E - C_E)} \]

\[\frac{C_U}{(N_U - C_U)} \]

End of the study
Control selected from the person still free of the disease at the end of the study

- Many cancer studies
- Congenital studies
- Accidents

- If we have a fixed cohort and the disease is rare (~ incidence below 5%) we can estimate easily the relative risk
Control selected at the beginning of the follow-up period

→ censored ● case ○ control
Control selected at the beginning of the follow-up period

- Inclusive design
- Case-base
- Hybrid retrospective
- Case-exposure
- Case-cohort

→ censored ● case ○ control
Exposed population

\[N_E \]

Cases \(C_E \)

Still at risk \(N_E - C_E \)

Unexposed population

\[N_U \]

Cases \(C_U \)

Still at risk \(N_U - C_U \)

Start of the study

\[\frac{C_E}{N_E} \]

\[\frac{C_U}{N_U} \]

End of the study

17
Control selected at the beginning of the follow-up period

- Non-recurrent common disease
- Protective factors which does not affect all exposed equally
- Good especially for multiple outcomes, if measurements of risk factors from stored material remain stable
- Not necessary to obtain the disease history of the selected controls
- The risk ratio is estimable if censoring is unrelated to exposure
Control drawn during the follow-up

- Early case:
 - Too late entry
 - Early censoring
 - Healthy till end

- Later case:
 - Late entry
 - Early censoring

- Case:
 - Too late entry
 - Early case
 - Late entry

- Censored:
 - Healthy till end
Control drawn during the follow-up

- Nested case-control

- Early case

- Early censoring

- Later case

- Too late entry

- Healthy till end

- Late entry

- censored

- case

- control
Exposed population

\[N_E - C_E \]

Unexposed population

\[N_U - C_U \]

Currently at risk

\[\frac{C_E}{C_U} \]

\[\frac{\text{py.ar}_E}{\text{py.ar}_U} \]

Start of the study

End of the study
Nested-case control

• The **only** logical design in an open population
• Most popular in chronic disease
• Non recurrent common disease with risk/protective factor affecting all exposed equally (e.g., vaccine with partial protection)
• Recurrent common diseases (diarrhoea, acute respiratory infection)

• About 90% of authors reported having estimated Odds Ratio while they did estimate the Rate Ratio
Matching

• Frequency matching: for cases in a specific stratum, take a set of control from a similar subgroup

• Individual matching: for each case, choose one or more (rarely >5) closely similar controls

• NCC: at least time matching!

• CC: no matching with cases
Matching

- Increase efficiency if the matching factor are strong risk factors for the disease, and correlated with the main exposure.

- Confounding due to poorly quantified factors can be removed by close matching.

- Matching on an intermediate variable between exposure and outcome ➤ bias.

- Matching on a surrogate of exposure which is not a true risk factor ➤ loss of efficiency.
The meaning of the odds ratio can depend on the method of selection of the control...

• Are the cases prevalent?

• Are the cases incident?
 – How were the control selected?
 • Population at risk at the beginning
 • Population free of disease at the end
 • Person-time at risk

• Type of the source population

• Sampling strategy

• Underlying assumptions
Example

```r
> library(Epi)
> library(survival)
> summary(oc)

id          birth          entry          exit  death  chdeath
Min.   : 1  1931-02-19:   3  1990-08-18:  12  2009-12-31:1205
1st Qu.:376 1931-08-24:   3  1991-04-10:  12  2000-01-23:   2
3rd Qu.:1126 1941-07-01:   3  1990-11-07:  10  2008-02-09:   2

> oc$yentry<-cal.yr(oc$entry)
> oc$yexit<-cal.yr(oc$exit)
> oc$ybirth<-cal.yr(oc$birth)
> oc$agentry<-oc$yentry-oc$ybirth
> oc$agexit<-oc$yexit-oc$ybirth

> head(oc)
   id  birth          entry          exit  death  chdeath  yentry  yexit  ybirth
 1  1  1943-02-19  1990-08-14  2009-12-31     0       0 1990.616 2009.997 1943.133
 2  2  1934-07-06  1990-08-14  2009-12-31     0       0 1990.616 2009.997 1934.509
 3  3  1939-03-05  1990-08-14  2009-12-31     0       0 1990.616 2009.997 1939.172
 4  4  1939-07-03  1990-08-14  2009-12-31     0       0 1990.616 2009.997 1939.500
 5  5  1935-02-18  1990-08-14  2006-03-13     1       0 1990.616 2006.194 1935.131
 6  6  1936-03-07  1990-08-14  2007-06-10     1       0 1990.616 2007.437 1936.179

> oc.lex<-Lexis(entry=list(per=yentry,age=agentry),exit=list(per=yexit),exit.status=chdeath,id=id,data=oc)
> summary(oc.lex)
Transitions:
To
From  0  1  Records:  Events:  Risk time:  Persons:
     0 1381 120  1501  120  25280.91  1501
```
Example

```r
> oc.lex$agen2 <- cut(oc.lex$agentry, br = seq(40, 62, 1))
> oc.lex$agen2
  [1] (47,48] (56,57] (51,52] (51,52] (55,56]...

> cactrl <- ccwc(entry = agentry, exit = agexit, fail = chdeath, controls = 2, match = agen2,
include = list(id, agentry), data = oc.lex, silent = F)

> head(cactrl)
     Set  Map   Time Fail agen2  id  agentry
1     1   8 63.93155    1 (47,48]    8 47.72348
2     1 1155 63.93155    0 (47,48] 1155 47.04997
3     1  614 63.93155    0 (47,48]  614 47.35387
4     2   95 66.67762    1 (47,48]   95 47.54278
5     2   11 66.67762    0 (47,48]   11 47.48255
6     2  204 66.67762    0 (47,48]  204 47.56194

> oc.ncc <- merge(cactrl, ocX[, c("id", "smok", "tchol", "sbp")], by.x = "Map", by.y = "id")

> head(oc.ncc)
     Map  Set   Time Fail agen2 id  agentry  smok  tchol sbp
1    2    15 64.55305    0 (56,57]  2 56.10678  3 6.55 128
2     8    1 63.93155    1 (47,48]  8 47.72348  2 7.43 154
3    11    2 66.67762    0 (47,48]  1 47.54278  2 5.26 155
4    28    39 66.36824    0 (58,59] 28 58.41752  1 4.56 230
5    33    67 62.76249    0 (53,54] 33 53.01300  4 6.89 127
6    37    8 52.50376    0 (40,41] 37 40.30938  3 5.15 116
```
Example

```r
> stat.table(index=list(smok,Fail), contents=list(count(), percent(smok)), margins=T, data=oc.ncc)

<table>
<thead>
<tr>
<th></th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>never</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>40.4</td>
</tr>
<tr>
<td>ex</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>22.9</td>
</tr>
<tr>
<td>1-14/d</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>25.0</td>
</tr>
<tr>
<td>&gt;14/d</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>11.7</td>
</tr>
<tr>
<td>Total</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
</tr>
</tbody>
</table>
```
Example

```r
> smok.crncc <- glm(Fail ~ smok, family = binomial, data = oc.ncc)
> summary(smok.crncc)

Call:
glm(formula = Fail ~ smok, family = binomial, data = oc.ncc)
Deviance Residuals:
       Min       1Q   Median       3Q      Max
-1.1774 -0.7704 -0.7447   1.3321   1.6841

Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.14072    0.20632  -5.529 3.22e-08 ***
smokex       0.07783    0.33672   0.231 0.817206
smok1-14/d   0.78405    0.28817   2.721 0.006513 **
smok>14/d    1.14072    0.33763   3.379 0.000729 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 458.29  on 359  degrees of freedom
Residual deviance: 441.87  on 356  degrees of freedom
AIC: 449.87

Number of Fisher Scoring iterations: 4
```

```r
> round(ci.lin(smok.crncc, E = T)[, 5:7], 3)

exp(Est.)    2.5%     97.5%
(Intercept)  0.320    0.213    0.479
smokex       1.081    0.559    2.091
smok1-14/d   2.190    1.245    3.853
smok>14/d    3.129    1.614    6.065
```
Example

```r
> m.clogit <- clogit(Fail ~ smok + sbpgrp + cholgrp + strata(Set), data = oc.ncc)
> summary(m.clogit)
Call:
coxph(formula = Surv(rep(1, 360L), Fail) ~ smok + sbpgrp + cholgrp + strata(Set), data = oc.ncc, method = "exact")
n = 360, number of events = 120

 coef exp(coef) se(coef)      z  Pr(>|z|)  
smokex 0.007656  1.007685  0.365587  0.021 0.98329 
smok1-14/d 0.673439  1.960970  0.296626  2.270 0.02319 * 
smok>14/d  1.139278  3.124510  0.359483  3.169 0.00153 **
sbpgrp[130,150) -0.075530  0.927252  0.326639 -0.231 0.81713 
sbpgrp[150,170) -0.066652  0.935521  0.342487 -0.195 0.84570 
sbpgrp[170,240]  0.936274  2.550460  0.389203  2.406 0.01615 *
cholgrp[5,6.5)  0.125522  1.133740  0.321175  0.391 0.69593 
cholgrp[6.5,13]  0.608167  1.837061  0.353258  1.722 0.08514 .

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
exp(coef) exp(-coef) lower .95 upper .95
smokex 1.0077     0.9924    0.4922     2.063 
smok1-14/d 1.9610     0.5100    1.0964     3.507 
smok>14/d 3.1245     0.3201    1.5445     6.321 
sbpgrp[130,150) 0.9273     1.0785    0.4888     1.759 
sbpgrp[150,170) 0.9355     1.0689    0.4781     1.831 
sbpgrp[170,240] 2.5505     0.3921    1.1894     5.469 
cholgrp[5,6.5) 1.1337     0.8820    0.6041     2.128 
cholgrp[6.5,13] 1.8371     0.5443    0.9192     3.671

Rsquare= 0.075  (max possible= 0.519 )
Likelihood ratio test= 28.09  on 8 df,  p=0.0004582
Wald test = 24.04  on 8 df,  p=0.0002253
Score (logrank) test = 27.08  on 8 df,  p=0.0006854
```
Example

```
> round(ci.lin(m.clogit,E=T)[,5:7],3)
  exp(Est.)   2.5%  97.5%
smokex              1.008 0.492  2.063
smok1-14/d          1.961 1.096  3.507
smok>14/d           3.125 1.545  6.321
sbpgrp[130,150)      0.927 0.489  1.759
sbpgrp[150,170)      0.936 0.478  1.831
sbpgrp[170,240]      2.550 1.189  5.469
cholgrp[5,6.5)       1.134 0.604  2.128
cholgrp[6.5,13]      1.837 0.919  3.671
```
References

• Nested case-control studies and case-control studies. Läära E, Plummer M; IARC WHO course, Sep 2011.

• Representation of follow-up. Cartensen B; IARC WHO course, Sep 2011.