^{1} M. S. Rosenthal, J. Cullom, W. Hawkins, S. C. Moore, B. M. Tsui, M. Yester, "Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council," J. Nucl. Med. **36**, 1489-1513 (1995).

^{2} H. Zaidi, "Quantitative SPECT: Recent developments in detector response, attenuation and scatter correction techniques," Physica Medica **12**, 101-117 (1996).

^{3} A. G. Schulz, L. G. Knowles, L. C. Kohlenstein, R. F. Mucci, and W. A. Yates "Quantitative assessment of scanning-system parameters," J. Nucl. Med. **11**, 61-68 (1970).

^{4} R. E. A. Dye, "Simulation of clinical scitingrams for nuclear medicine imaging devices," Phys. Med. Biol. 33, 1329-1334 (1988).

^{5} P. Gantet, J. P. Esquerre, B. Danet, R. Guiraud "A simulation method for studying scintillation camera collimators," Phys. Med. Biol. **35**, 659-669 (1990).

^{6} F. J. Beekman and M. A. Viergever, "Fast SPECT simulation including object shape dependent scatter," IEEE Trans. Med. Imaging **14**, 271-82 (1995).

^{7} J. S. Fleming "Evaluation of a technique for simulation of gamma camera images," Phys. Med. Biol. **41**, 1855-1861 (1996).

^{8} D. D. McCracken, "The Monte Carlo Method," Sci. Am. **192**, 90-96 (1955).

^{9} H. Kahn, "Use of different Monte Carlo sampling techniques," in Monte Carlo Methods ed. H. A. Meyer (Wiley, New York, 1956).

^{10} D. E. Raeside, "Monte Carlo principles and applications," Phys. Med. Biol. **21**, 181-197 (1976).

^{11} T. M. Jenkins; W. R. Nelson, A. Rindi, Monte Carlo Transport of Electrons and Photons, (Plenum Press; New-York, 1988).

^{12} R. L. Morin, Monte Carlo simulation in the radiological sciences, (Boca Raton, FL: CRC, 1988).

^{13} I. Lux and L. Koblinger, Monte Carlo particle transport methods: Neutron and photon calculations, (Boca Raton, FL: Chemical Rubber Company, 1991).

^{14} M. Ljungberg, S-E. Strand, and M. A. King, Monte Carlo calculations in nuclear medicine, (IOP Publishing, London, 1998).

^{15} P. Andreo, "Monte Carlo techniques in medical radiation physics," Phys. Med. Biol. **36**, 861-920 (1991).

^{16} J. E. Turner, H. A. Wright, R. N. Hamm, "A Monte Carlo primer for health physicists," Health Phys. **48**, 717-733 (1985).

^{17} D. Murray, "Using EGS4 Monte Carlo in medical radiation physics," Australas Phys. Eng. Sci. Med. **13**, 132-147 (1990).

^{18} M. M. Dresser, Scattering effects in radioisotopic imaging, PhD Thesis (University of Michigan, University Microfilms, Ann Arbor, MI, 1972).

^{19} J. W. Beck, "Analysis of a camera based Single Photon Emission Coputed Tomography (SPECT) system," Thesis (University of Duke, University Microfilms, Ann Arbor, MI) (1982).

^{20} M. Ljungberg and S.-E. Strand, "A Monte Carlo program for the simulation of scintillation camera characteristics," Comput. Methods Programs Biomed. **29**, 257-272 (1989).

^{21} D. J. de Vries, S. C. Moore, R. E. Zimmerman, S. P. Mueller, B. Friedland, and R. C. Lanza, "Development and validation of a Monte Carlo simulation of photon transport in an Anger camera," IEEE Trans. Med. Imag. **9**, 430-438, (1990).

^{22} I. G. Zubal, C. R. Harrell, P. D. Esser, "Monte Carlo determination of emerging energy spectra for diagnostically realistic radiopharmaceutical distributions." Nucl. Instr. Meth. Phys. Res. **A299**, 544-547 (1990).

^{23} J. C. Yanch, A. B. Dobrzeniecki, C. Ramanathan and R. Behrman, "Physically realistic Monte Carlo simulation of source collimator and tomographic data acquisition for emission computed tomography," Phys. Med. Biol. **37**, 853-870 (1992).

^{24} N. A. Keller and J. R. Lupton, "PET detector ring aperture function calculations using Monte Carlo techniques," IEEE Trans. Nucl. Sci. **30**, 676-680 (1983).

^{25} C. J. Thompson, J-M. Cantu and Y. Picard, "PETSIM: Monte Carlo program simulation of all sensitivity and resolution parameters of cylindrical positron imaging systems," Phys. Med. Biol. **37**, 731-749 (1992).

^{26} R. L. Harrison, S. D. Vannoy, D. R. Haynor, S. B. Gillispie, M. S. Kaplan and T. K. Lewellen, "Preliminary experience with the photon history generator module for a public-domain simulation system for emission tomography," in Conf. Rec. IEEE Med. Imag. Conf., San Francisco, 1993, pp. 1154-1158* *(New York IEEE, 1994).

^{27} H. Zaidi, A. Herrmann Scheurer and C. Morel, "Development of an object-oriented Monte Carlo simulator for 3D positron tomography," in Conf. Rec. of the International Meeting in Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Nemacolin Woodlands, 1997, eds P. Kinahan and D. Townsend, pp. 176-179, (UPMC, Pittsburgh, 1997).

^{28} M. Dahlbom, L. R. MacDonald, M. Schmand, and L. Eriksson, M. Andreaco, and C. Willams,"A YSO/LSO phoswich array detector for single and coincidence photon imaging," IEEE Trans. Nucl. Sci. **45**, 1128 1132 (1998).

^{29} F. James, "Monte Carlo theory and practice," Rep. Prog. Phys. **43**, 1145-1189 (1980).

^{30} T. Lund, "An introduction to the Monte Carlo method," Rep.CERN/HS/067 CERN data handling division, Geneva (1981).

^{31} G. Marsaglia and A. Zaman, "Some portable very-long-period random number generators," Computers in Physics **8**, 117-121 (1994).

^{32} J. C. Ehrhardt, "Generation of pseudorandom numbers," Med. Phys. **13**, 240-241 (1986).

^{33} A. M. Ferrenberg, D. P. Landau, and Y. J. Wong, "Monte Carlo simulations: hidden errors from "good" random number generators," Phys. Rev. Let. **69**, 3382-3384 (1992).

^{34} I. Vattulainen, K. Kankaala, J. Saarinen, and T. Ala-Nissila, "A comparative study of some pseudorandom number generators," Comp. Phys. Comm. **86**, 209-226, (1995).

^{35} T. E. Booth, "The intelligent random number technique in MCNP," Nucl. Sci. Eng. **100**, 248-54 (1988).

^{36}** **D. H. Lehmer, "Mathematical methods in large-scale computing units," In Proceedings of the 2nd Symposium on Large-Scale Digital Calculating Machinery, Cambridge, Massachusetts Harvard University Press, pp 141-146 (1949).

^{37} G. Marsaglia and A. Zaman, "Monkey tests for random number generators," Comp. Math. Applic. **23**, 1-10 (1993).

^{38} D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Second edition. (Addison-Wesley Reading, Massachusetts 1981).

^{39} W. H. Press, Numerical Recipes in C, The art of scientific computing, (University Press, Cambridge, 1992).

^{40} S. L. Anderson, "Random number generators on vector supercomputers and other advanced architectures," SIAM Review **32**, 221-251 (1990).

^{41} M. Mascagni, S. A. Cuccaro, D. V. Pryor, and M. L. Robinson, "A fast, high-quality, and reproducible lagged-Fibonacci pseudorandom number generator," J. Comput. Physics **15**, 211-219 (1995).

^{42} R. P. Brent, "On the periods of generalized Fibonacci recurrences," Math. Comput. **63**, 389-401 (1994).

^{43} H. Zaidi, C. Labbé and C. Morel, "Implementation of an environment for Monte Carlo simulation of fully 3D positron tomography on a high-performance parallel platform," Parallel Computing, **9-10**, 1523-1536 (1998)

^{44} A. E. Nahum, Overview of photon and electron Monte Carlo, edited by T. Jenkins, W. Nelson, A. Rindi, A. Nahum, and D. W. Rogers, pp 3-20, (Plenum Press, New York, 1989).

^{45} D. W. O. Rogers and A. F. Bielajew, Monte Carlo techniques of electron and photon transport for radiation dosimetry, in The Dosimetry of Ionizing Radiation, Vol III, eds. K.R. Kase, B.E. Bjarngard, and F.H. Attix, (Academic Press) pp 427-539 (1990).

^{46} M. J. Berger and J. H. Hubbell, XCOM: Photon cross sections on a personal computer, NBSIR 87-3597 (1987).

^{47} D. K. Trubey, M. J. Berger and J. H. Hubbell, "Photon cross sections for ENDF/B-IV," American Nuclear Society Topical Meeting, Advances in Nuclear Engineering Computation and Radiation Shielding , Santa Fe, New Mexico, (1989).

^{48} R. Brun, F. Bruyant, M. Maire, A. C. McPherson, and P. Zanarini, GEANT 3 (CERN DD/EE/84-1, 1987).

^{49} Y. Picard, C. J. Thompson and S. Marrett, "Improving the precision and accuracy of Monte Carlo simulation in positron emission tomography," IEEE Trans Nucl Sci **39**, 1111-1116 (1992).

^{50} J. M. Boone and A. E. Chavez, "Comparison of x-ray cross sections for diagnostic and therapeutic medical physics," Med. Phys. **23**, 1997-2005 (1997).

^{51} H. Zaidi, C. Labbé and C. Morel, "Improvement of the performance and accuracy of PET Monte Carlo simulations," *To appear in Conf. Proc.* SPIE's International Symposium on Medical imaging 1999, San Diego, USA.

^{52} ICRU, Tissue Substitutes in Radiation Dosimetry and Measurement, Report 44 of the International Commission on Radiation Units and Measurements (Bethesda, MD, 1989).

^{53} W. V. Prestwich, J. Nunes, C. S. Kwok, "Beta dose point kernels for radionuclides of potential use in radioimmunotherapy", J. Nucl. Med. **30**, 1036-1046 (1989).

^{54} T. E. Hui, D. R. Fisher, J. A. Kuhn, L. E. Williams, C. Nourigat, C. C. Badger, B. G. Beatty, J. D. Beatty, "A mouse model for calculating cross-organ beta doses from yttrium-90-labeled immunoconjugates," Cancer **1**, (Suppl 3) 951-957 (1994).

^{55} E. E. Furhang, C. S. Chui, K. S. Kolbert, S. M. Larson, G. Sgouros, "Implementation of a Monte Carlo dosimetry method for patient-specific internal emitter therapy," Med. Phys. **24**, 1163-1172 (1997).

^{56} M. J. Berger, Monte Carlo calculation of the penetration and diffusion of fast charged particles methods in computational physics. Vol 1, edited by B. Alder, S. Fernbach and M. Rotenberg (Academic Press, New York, 1963).[dieresis]

^{57} A. F. Bielajew and D. W. O. Rogers, "PRESTA: The Parameter reduced electron-step transport algorithm for electron Monte Carlo transport," Nucl. Instr. Meth. **B18**, 165-181 (1987).

^{58} P. Andreo, J. Medin, A. F. Bielajew, "Constraints of the multiple-scattering theory of Moliere in Monte Carlo simulations of the transport of charged particles," Med. Phys. **20**, 1315-1325 (1993).

^{59} I. Kawrakow, "Improved modeling of multiple scattering in the voxel Monte Carlo model," Med. Phys. **24**, 505-517 (1997).

^{60} D. W. O. Rogers, "Low energy electron transport with EGS," Nucl. Inst. Meth. **227**, 535-548 (1984).

^{61} C. M. Ma and A. E. Nahum, "A new algorithm for EGS4 low-energy electron transport to account for the change in discrete interaction cross-section with energy," Nucl. Instru. Meth. **B72**, 319-330 (1992).

^{62} A. F. Bielajew and D. W. O. Rogers, Variance-reduction techniques, in Monte Carlo Transport of Electrons and Photons, edited by T. Jenkins, W. Nelson, A. Rindi, A. Nahum, and D. Rogers, pp 407-419, (Plenum Press, New York. 1989).

^{63} D. R. Haynor, R. L. Harrison and T. K. Lewellen, "Improving the efficiency of emission tomography using variance reduction techniques," IEEE Trans. Nucl. Sci. **37**, 749-53 (1990).

^{64} I. G. Zubal, C. R. Harell, "Voxel-based Monte Carlo calculations of nuclear medicine images and applied variance reduction techniques," Image and Vision Computing **10**, 342-348 (1992).

^{65} D. R. Haynor, R. L. Harrison, T. K. Lewellen, "The use of importance sampling techniques to improve the efficiency of photon tracking in emission tomography simulations," Med. Phys. **18**, 990-1001 (1991).

^{66} C. M. Ma and A. E. Nahum, "Calculation of absorbed dose ratios using correlated Monte Carlo sampling," Med. Phys. **20**, 1189-1199 (1993).

^{67} M. A. Holmes, T. R. Mackie, W. Sohn, P. J. Reckwerdt, T. J. Kinsella, A. F. Bielajew, D. W. Rogers, "The application of correlated sampling to the computation of electron beam dose distributions in heterogeneous phantoms using the Monte Carlo method," Phys. Med. Biol. **38**, 675-688 (1993).

^{68} H.O. Anger, "Scintillation camera with multichannel collimators," J Nucl. Med. **5**, 515-531 (1964).

^{69} R.J. Jaszczak, K.L. Greer, R.E. Coleman, "SPECT using a specially designed cone beam collimator," J. Nucl. Med. **29**, 1398-1405 (1988).

^{70} B.M.W. Tsui, G.T. Gullberg, E.R. Edgerton, D.R. Gilland, J.R. Perry, W.H. McCartney, "Design and clinical utility of a fan beam collimator for SPECT imaging of the head," J. Nucl. Med. **27**, 810-819 (1986).

^{71} D. A. Weber, M. Ivanovic, D. Franceschi, S. E. Strand, K. Erlandsson, M. Franceschi, H. L. Atkins, J. A. Coderre, H. Susskind, T. Button, *et al*, "Pinhole SPECT: an approach to in vivo high resolution SPECT imaging in small laboratory animals," J. Nucl. Med. **35**, 342-348 (1994).

^{72} H. Zaidi, "Assessment of thyroid volume with pinhole emission computed tomography," Physica Medica. **12**, 97-100 (1996).

^{73} C. Miller, L Filipow, S Jackson, "A review of activity quantification by planar imaging methods," J. Nucl. Med. Technol. **23**, 3-11 (1995).

^{74} S. R. Cherry, "Recent advances in instrumentation for positron emission tomography," Nucl. Instr. Meth. **A348**, 577-582 (1994).

^{75} C. Michel, A. Bol, T. Spinks, D.W. Townsend, D. Bailey, S. Grootoonk and T. Jones, "Assessment of response function in two PET scanners with and without interplane septa," IEEE Trans. Med. Imag. **10**, 240-248 (1991).

^{76} M. Dahlbom, G. Rosenquist, L. Eriksson, C. Bohm, "A study of the possibility of using multi-slice PET systems for 3D imaging," IEEE Trans. Nucl. Sci. **36**, 1066-1071 (1989).

^{77} M. E. Daube-Witherspoon and G. Muehllehner, "Treatment of axial data in three-dimensional PET," J. Nucl. Med. **82**, 1717-1724 (1987).

^{78} P. E. Kinahan and J. G. Rogers, "Analytic 3D image reconstruction using all detected events," IEEE Trans. Nucl. Sci. **36**, 964-968 (1989).

^{79} C. Comtat C., C. Morel, M. Defrise and D. W. Townsend, "The Favor algorithm for 3D PET data and its implementation using a network of transputers," Phys. Med. Biol. **38**, 929-944 (1993).

^{80} J. M. Ollinger, "Model-based scatter correction for fully 3D PET," Phys. Med. Biol. **41**, 153-176 (1996).

^{81} C. C. Watson, D. Newport, M. E. Casey, A. deKemp, R. S. Beanlands and M. Schmand, "Evaluation of simulation-based scatter correction for 3-D PET cardiac imaging," IEEE Trans. Nucl. Sci. **44**, 90-97 (1997).

^{82} J. T. Kuikka, K. E. Britton, V. U. Chengazi, S. Savolainen, "Future developments in nuclear medicine instrumentation: A review," Nucl. Med. Commun. **19**, 3-12 (1998).

^{83} C. D. Zerby, A Monte Carlo calculation of the response of gamma-ray scintillation counters. Methods in Computational Physics, vol 1 ed B. Alder, S. Fermbach and M. Rotenberg (New York Acadmic) pp 89-134 (1963).

^{84} M. J. Berger and S. M. Seltzer, "Response functions for sodium iodide scintillation detectors," Nucl. Instrum. Methods **A104**, 317-332 (1972).

^{85} D. W. O. Rogers, "More realistic Monte Carlo calculations of photon detector response functions," Nucl. Instrum. Methods **199**, 531-548 (1982).

^{86} K. Saito and S. Moriuchi, "Monte Carlo calculation of NaI(Tl) detector response functions for low-energy gamma rays," Nucl. Inst. Meth. **226**, 449-454 (1984).

^{87} H. Chan, C. Chen, K. Doi, T. R. Fewell, and R. E. Shuping, "Investigation of energy responses of germanium detectors and correction of measured spectra by means of Monte Carlo simulation," Radiat. Res. **99**, 443-463 (1984).

^{88} H. H. Hsu, E. J. Dowdy, G. P. Estes, M. C. Lucas, J. M. Mack, C. E. Moss, and M. E. Hamm, "Efficiency of bimsuth germanate scintillators: Comparison of Monte Carlo calculations with measurements," IEEE Trans. Nucl. Sci. **37**, 390-395 (1989).

^{89} F. H. Fahey, R. E. Zimmerman, P.F. Judy, R. C. Lanza, "Detection efficiency of a high-pressure gas scintillation proportional chamber," Med. Phys. **14**, 115-23 (1987).

^{90} E. Tanaka, N. Nohara, H. Murayama, "New Anger scintillation cameras with improved count rate capability," Radioisotopes **29**, 320-325 (1980).

^{91} M. Conti, A. Del Guerra, D. Mazzei, P. Russo, W. Bencivelli, E. Bartolucci, A. Messineo, V. Rosso, A. Stefanini, U. Bottigli, P. Randaccio, and W. R. Nelson, "Use of the EGS4 Monte Carlo code to evaluate the response of HgI and CdTe detectors for photons in the diagnostic energy range," Nucl. Instr. Meth. **A322**, 591-595 (1992).

^{92} S E. Derenzo, "Monte Carlo calculations of the detection efficiency of NaI(Tl), BGO, CsF, Ge and plastic detectors for 511 keV photons," **28**, 11-136 (1981).

^{93} S E. Derenzo, J. K. Riles, "Monte Carlo calculations of the optical coupling between bismuth germanate crystals and photomultiplier tubes," **29**, 191-195 (1982).

^{94} U. Bottigli, R. Guzzardi, M. Mey, R. Bellazzini, P. Giannetti, M. A. Giorgi, M. M. Massai, G. Tonelli, "Monte Carlo simulation and experimental tests on BGO, CsF and NaI(Tl) crystals for positron emission tomography," J. Nucl. Med. Allied. Sci **29**, 221-227 (1985).

^{95} A. N. Bice, T. K. Lewellen. R. S. Miyaoka, R. L. Harrison, D. R. Haynor, K. R. Pollard, C. P. Hanson, and S. B. Gillispie, "Monte Carlo simulation of BaF2 detectors used in time-of-flight positron emission tomography," IEEE Trans. Nucl. Sci. **37**, 696-701 (1990).

^{96} M. I. Lopes, V. Chepel, J. C. Carvalho, R. Ferreira Marques and A.J.P.L. Policarpo, "Performance analysis based on a Monte Carlo simulation of a liquid Xenon PET detector," IEEE Trans. Nucl. Sci. **42**, 2298-2302 (1995).

^{97} P. F. Binkley, "Optimization of scintillation detector timing systems using Monte Carlo analysis," IEEE Trans. Nucl. Sci. **41**, 386-393 (1994).

^{98} R. H. Huesman, E. M. Salmeron, and J. R. Baker, "Compensation for crystal penetration in high resolution positron tomography," IEEE Trans. Nucl . Sci. **36**, 1100-1107 (1989).

^{99} K. A. Comanor, P. R. G. Virador and W. W. Moses, "Algorithms to identify detector Compton scatter in PET modules," IEEE Trans. Nucl. Sci. **43**, 2213-2218 ( (1996).

^{100} T. A. DeVol, W. W. Moses and S. E. Derenzo, "Monte Carlo optimization of depth-of-interaction resolution in PET crystals," IEEE Trans Nucl Sci. **40**, 170- 174, (1993).

^{101} W. W. Moses and S. E. Derenzo, "Design studies for a PET detector module using a PIN photodiode to measure depth of interaction," IEEE Trans. Nucl. Sci., **41**, 1441-1445, (1994).

^{102} G. Tsang, C. Moisan and J. G. Rogers, A simulation to model position encoding multicrystal PET detectors, IEEE Trans. Nucl. Sci. **42**, 2236-2243 (1995).

^{103} C. Moisan, J. G. Rogers, K.R. Buckley, T.J. Ruth, M.W. Stazyk and G. Tsang "Design studies of a depth-encoding large aperture PET camera," IEEE Trans. Nucl. Sci. **42**, 1041-1050 (1995).

^{104} D. Vozza, C. Moisan and S. Paquet, "An improved model for energy resolution of multicrystal encoding detectors for PET," IEEE Trans. Nucl. Sci. **44**, 179-183 (1997).

^{105} S. Delorme, R. Frei, C. Jospeh, J.-F. Loude and C. Morel, "Use of a neural network to exploit light division in a triangular scintillating crystal," Nucl. Instr. Meth. **A373**, 111-118 (1996).

^{106} D. W. Litzenberg, F. D. Becchetti and D. A. Roberts, "On-line PET monitoring of radiotherapy beams: image reconstruction and Monte Carlo simulations of detector geometries, IEEE Trans. Nucl. Sci. **44**, 1646-1657 (1997).

^{107} H. Zaidi, "Comparative methods for quantifying thyroid volume using planar imaging and SPECT". J. Nucl. Med.**37**, 1421-1426 (1996).

^{108} L. J. Hahn, R. J. Jaszczak, G. T. Gullberg, C. E. Floyd, S. H. Manglos, K. L. Greer, R. E. Coleman, "Noise characteristics for cone beam collimators: a comparison with parallel hole collimator," Phys. Med. Biol. **33**, 541-555 (1988).

^{109} S. Kimiaei and S. A. Larsson, "Optimal design of planar-concave collimators for SPECT - an analytical approach" Phys. Med. Biol. **43**, 637-650 (1998).

^{110} J. J. Battista and M. J. Bronskill, "Compton-scatter tissue densitometry: calculation of single and multiple scatter photon fluences," Phys. Med. Biol. **23**, 1-23 (1978).

^{111} S. Webb, D. M. Binnie, M. A. Flower, R. J. Ott, "Monte Carlo modelling of the performance of a rotating slit-collimator for improved planar gamma-camera imaging," Phys. Med. Biol. **37**, 1095-1108 (1992).

^{112} C. E. Metz, F. B. Atkins, R. N. Beck, "The geometric transfer function component for scintillation camera collimators with straight parallel holes," Phys. Med. Biol. **25**, 1059-1070 (1980).

^{113} S. Kimiaei, M. Ljungberg, and S. A. Larsson, "Evaluation of optimally designed planar-concave collimators in single-photon emission tomography," Eur. J. Nucl. Med. **24**, 1398-1404 (1997).

^{114} C. J. Thompson, "The effect of collimation on singles rates in multi-slice PET," IEEE Trans. Nucl. Sci. **35**, 598-602 (1988).

^{115} W. M. Digby, M. Dahlbom, E, J, Hoffman, "Detector, shielding and geometric design factors for a high-resolution PET system," IEEE Trans. Nucl. Sci. **37**, 664-670 (1990).

^{116} S. C. Moore, D. J. de Vries, B. Nandram, M. F. Kijewski, S. P. Mueller, "Collimator optimization for lesion detection incorporating prior information about lesion size," Med. Phys. **22**, 703-713 (1995).

^{117} R. J. Jaszczak, C. E. Floyd, S. H. Manglos, K. L. Greer, R. E. Coleman, "Cone beam collimation for single photon emission computed tomography: analysis, simulation, and image reconstruction using filtered backprojection," Med. Phys. **13**, 484-489 (1986).

^{118} K. R. Pollard, A. N. Bice, J. F. Eary, L. D. Durack, T. K. Lewellen, "A method for imaging therapeutic doses of iodine-131 with a clinical gamma camera," J. Nucl. Med. **33**, 771-776 (1992).

^{119} H. Wang, R. J. Jaszczak, Coleman, R.E. "Monte Carlo modeling of penetration effect for iodine-131 pinhole imaging," IEEE Trans. Nucl. Sci. **43**, 3272-3277 (1996).

^{120} M. F. Smith, R. J. Jaszczak, "The effect of gamma ray penetration on angle-dependent sensitivity for pinhole collimation in nuclear medicine," Med. Phys. **24**, 1701-1709 (1997).

^{121} C. J. Thompson, J. M. Roney, R. Lecomte, D. Schmitt, L. R. Lupton, "Dependence of the coincidence aperture function of narrow BGO crystals on crystal shape and light encoding schemes," Phys. Med. Biol. **31**, 491-506 (1986).

^{122} C. J. Thompson, "The effect of collimation on scatter fraction in multi-slice PET," IEEE Trans. Nucl. Sci. **36**, 1072-1077 (1989).

^{123} Bradshaw J, Burnham C and Correia J. "Application of Monte Carlo methods to the design of SPECT detector systems," IEEE Trans Nucl Sci. **32**, 753-757 (1985).

^{124} L. R. Lupton and N. A. Keller, "Performance study of single-slice positron emission tomography scanners by Monte Carlo techniques," IEEE Trans. Med. Imag. **2**, 154-168 (1983).

^{125} J. A. Heanue, J. K. Brown, H. R. Tang, B. H. Hasegawa "A bound on the energy resolution required for quantitative SPECT," Med Phys **23**, 169-173 (1996).

^{126} G. H. Kramer, M. J. Chamberlain and S. Yiu, "A study of thyroid radioiodine monitoring by Monte Carlo simulations: implications for equipment design," Phys. Med. Biol. **42**, 2175-2182 (1997).

^{127} C. W. Stearns, C. A. Burnham, D. A. Chesler, and G. L. Brownell, "Simulation studies for cylindrical positron tomography," IEEE Trans. Nucl. Sci. **35**, 708-711 (1988).

^{128} J. G. Rogers, R. Harrop, P. E. Kinahan, N. A. Wilkinson, and G. H. Coombes, "Conceptual design of a whole body PET machine" IEEE Trans. Nucl. Sci. **35**, 680-684 (1988).

^{129} A. Del Guerra and W. R. Nelson, Positron emission tomography applications of EGS, in Monte Carlo transport of electrons and photons. ed. Jenkins TM, Nelson WR, Rindi A, Plenum publishing corporation, pp 469-484 (1988).

^{130} D. Bollini, A. Del Guerra, G. Di Domenico, M. Galli, M. Gambaccini and G. Zavattini, "Sub-millimeter planar imaging with positron emitters: EGS4 code simulation and experimental results," IEEE Trans. Nucl. Sci. **44**, 1499-1502 (1997).

^{131} C. J. Thompson, "The effects of detector material and structure on PET spatial resolution and efficiency," IEEE Trans. Nucl. Sci. **37**, 718-724 (1990).

^{132} G. Tzanakos and S. Pavlopoulos, "Development and validation of a simulation model for the design of a PET scanner," IEEE Trans. Nucl. Sci. **39**, 1093-1098 (1992).

^{133} S. Pavlopoulos and G. Tzanakos, "Design and performance evaluation of a high-resolution small animal positron tomograph," IEEE Trans. Nucl. Sci. **43**, 3249-3255 (1996).

^{134} R. S. Miyaoka, "Dynamic high resolution positron emission imaging of rats," Biomed. Sci. Instrum. **27**, 35-42 (1991).

^{135} W. W. Moses, P. R. G. Virador, S. E. Derenzo, R. H. Huesman and T. F. Budinger, "Design of a high-resolution, high-sensitivity PET camera for human brains and small animals," IEEE Trans. Nucl. Sci. **44**, 1487-1491 (1997).

^{136} R. R. Raylman, B. E. Hammer and N. L. Christensen, "Combined MRI-PET scanner: a Monte Carlo evaluation of the improvements in PET resolution due to the effects of a static homogeneous magnetic field," IEEE Trans. Nucl. Sci. **43**, 2406-2412 (1996).

^{137} J. G. Rogers, M. Stazyk, R. Harrop, C. J. Dykstra, J. S. Barney, M. S. Atkins, and P. E. Kinahan, "Towards the design of a positron imaging camera" IEEE Trans. Nucl. Sci. **37**, 789-794 (1990).

^{138} H. Zaidi, A. Herrmann Scheurer and C. Morel, "An object-oriented Monte Carlo simulator for 3D positron tomographs," Comput. Methods Programs Biomed. ** 58 **, 133-145 (1999)

^{139} M. Defrise, "A factorization method for the 3D X-ray transform," Inverse Problems **11**, 983-994 (1995).

^{140} K. M. Hanson, "Method of evaluating image-recovery algorithms based on task performance," J. Opt. Soc. Am. A. **7**, 1294-304 (1990).

^{141} T. A. Riauka, H. R. Hooper, Z. W. Gortel, "Experimental and numerical investigation of the 3D SPECT photon detection kernel for non-uniform attenuating media," Phys. Med. Biol. **41**, 1167-1189 (1996).

^{142} M. F. Smith , C. E. Floyd, R. J. Jaszczak, R. E. Coleman, "Three-dimensional photon detection kernels and their application to SPECT reconstruction," Phys. Med. Biol. **3**, 605-622 (1992).

^{143} M. A. King, W. Xia, D. J. de Vries, T. S. Pan, B. J. Villegas, S. Dahlberg, B. M. Tsui, M. Ljungberg, H. T. Morgan, "A Monte Carlo investigation of artifacts caused by liver uptake in single-photon emission computed tomography perfusion imaging with technetium 99m-labeled agents," J. Nucl. Cardiol. **3**, 18-29 (1996).

^{144} C. E. Floyd, R. J. Jaszczak, R. E. Coleman, "Convergence of the maximum likelihood reconstruction algorithm for emission computed tomography," Phys. Med. Biol. **32**, 463-476 (1987).

^{145} J. E. Bowsher, C. E. Floyd, "Treatment of Compton scattering in maximum-likelihood, expectation-maximization reconstructions of SPECT images," J. Nucl. Med. **32**, 1285-1291 (1991).

^{146} Z. Liang, R. J. Jaszczak, C. E. Floyd, K. L. Greer, R. E. Coleman, "Bayesian reconstruction for SPECT: validation with Monte Carlo simulation, experimental phantom, and real patient data," Int. J. Imaging Syst. Techn. **1**, 149-169 (1989).

^{147} D. M. Higdon, J. E. Bowsher, V. E. Johnson, T. G. Turkington, D. R. Gilland, R. J. Jaszczak, "Fully Bayesian estimation of Gibbs hyperparameters for emission computed tomography data," IEEE Trans. Med. Imag. **16**, 516-526 (1997).

^{148} D. S. Lalush D.S. and B. M. W. Tsui, "Fast and stable maximum a-Posteriori conjugate gradient reconstruction algorithm," Med. Phys. **22**, 8:1273-1284 (1995).

^{149} G. Chinn G, S. C. Huang, "A general class of preconditioners for statistical iterative reconstruction of emission computed tomography," IEEE Trans. Med. Imag. **16**, 1-10 (1997).

^{150} C. E. Floyd, R. J. Jaszczak, R. E. Coleman, "Inverse Monte Carlo: a unified reconstruction algorithm for SPECT," IEEE. Trans. Sci. **32**, 779-785 (1985).

^{151} W. L. Dunn, "Inverse Monte Carlo analysis," J. Comput. Phys. **41**, 154-166 (1981).

^{152} C. E. Floyd, R. J. Jaszczak, K. L. Greer, R. E. Coleman, "Inverse Monte Carlo as a unified reconstruction algorithm for ECT," J. Nucl. Med. **27**, 1577-1585 (1986).

^{153} C. E. Floyd, R. J. Jaszczak, S. H. Manglos, R. E. Coleman, "Compensation for collimator divergence in SPECT using inverse Monte Carlo reconstruction," IEEE Trans. Nucl. Sci. **35**, 784-787 (1988).

^{154} D. W. Wilson, B. M. W. Tsui and H. Barrett, "Noise properties of the EM algorithm: II. Monte Carlo simulations," Phys. Med. Biol. **39**, 847-71 (1994).

^{155} W. Wang and G. Gindi, "Noise analysis of MAP-EM algorithms for emission tomography," Phys. Med. Biol. **42**, 2215-2232 (1997).

^{156} C. E. Floyd, R. J. Jaszczak, C. C. Harris, R. E. Coleman, "Energy and spatial distribution of multiple order Compton scatter in SPECT: A Monte Carlo investigation," Phys. Med. Biol. **29**, 1217-1230 (1984).

^{157} C. E. Floyd, R. J. Jaszczak, R. E. Coleman, "Scatter detection in SPECT imaging: dependence on source depth, energy, and energy window," Phys. Med. Biol. **33**, 1075-1081 (1988).

^{158} T. S. Pan, M. A. King, D. J. de Vries, M. Ljungberg, "Segmentation of the body and lungs from Compton scatter and photopeak window data in SPECT: A Monte-Carlo investigation," IEEE Trans. Med. Imag. **15**, 13-24 (1996).

^{159} H. Zaidi, "Organ volume estimation using SPECT," IEEE Trans. Nucl. Sci. **43**, 2174-2182 (1996).

^{160} C. A. Lowry, M. J. Cooper, "The problem of Compton scattering in emission tomography: a measurement of its spatial distribution" Phys. Med. Biol. **32**, 1187-1191 (1987).

^{161} A. Kojima, M. Matsumoto, M. Takahashi, S. Uehara "Effect of energy resolution on scatter fraction in scintigraphic imaging: Monte Carlo study," Med Phys **20**, 1107-1113 (1993).

^{162} S. H. Manglos, C. E. Floyd, R. J. Jaszczak, K. L. Greer, C. C. Harris, R. E. Coleman "Experimentally measured scatter fractions and energy spectra as a test of Monte Carlo simulations," Phys. Med. Biol. **32**, 335-343 (1987).

^{163} D. Gagnon, L. Laperriere, N. Pouliot, D. J. de Vries, S. C. Moore, "Monte Carlo analysis of camera-induced spectral contamination for different primary energies," Phys. Med. Biol. **37**, 1725-1739 (1992).

^{164} E. C. Frey and B.M.W. Tsui, "Parameterization of the scatter response function in SPECT imaging using Monte Carlo simulation," IEEE Trans. Nucl. Sci. **37**, 1308-1315 (1990).

^{165} K. F. Koral, X. Wang, K. R. Zasadny, N. H. Clinthorne, W. L. Rogers, C. E. Floyd, R. J. Jaszczak, "Testing of local gamma-ray scatter fractions determined by spectral fitting," Phys. Med. Biol. **36**, 177-190 (1991).

^{166} M. S. Rosenthal and L. A. Henry, "Monte Carlo simulation of scatter in non-uniform symmetrical attenuating media for point and distributed sources," Appl. Radiat. Isot. **43**, 449-454 (1992).

^{167} E. C. Frey and B. M. W. Tsui, "Modeling the scatter response function in inhomogeneous scattering media for SPECT," IEEE Trans. Nucl. Sci. **41**, 1585-93 (1994).

^{168} E. C. Frey and B. M. W. Tsui, "A fast projector-backprojector pair modeling the asymmetric, spatially varying scatter response function for scatter compensation in SPECT imaging," IEEE Trans. Nucl. Sci. **40**, 1192-1197 (1993).

^{169} M. Ljungberg, S-E Strand, N. Rajeevan, and M. A King, "Monte Carlo simulation of transmission studies using a planar source with a parallel collimator and a line source with a fan-beam collimator," IEEE Trans. Nucl. Sci. **41**, 1577-1584 (1994).

^{170} K. Kawamura, K. Ogawa, A. Kubo, T. Ichihara, "Quantitative measurement of scattered photons during gamma ray transmission CT using Monte Carlo simulation," IEEE Trans. Nucl. Sci. **44**, 1225-1230 (1997).

^{171} R. D. Speller and J. A. Horrocks, "A Monte Carlo study of multiple scatter effects in Compton scatter densitometry," Med. Phys. **15**, 707-712 (1988).

^{172} C. E. Floyd, R. J. Jaszczak, C. C. Harris, K. L. Greer, R. E. Coleman, "Monte Carlo evaluation of Compton scatter subtraction in single photon emission computed tomography," Med. Phys. **12**, 776-778 (1985).

^{173} M. C. Gilardi, V. Bettinardi, A. Todd-Pokropek, L. Milanesi, F. Fazio, "Assessment and comparison of three scatter correction techniques in single photon emission computed tomography," J. Nucl. Med. **29**, 1971-1979 (1988).

^{174} J. Mas, P. Hannequin, R. Ben Younes, B. Bellaton, R. Bidet R, "Scatter correction in planar imaging and SPECT by constrained factor analysis of dynamic structures (FADS)," Phys. Med. Biol. **35**, 1451-1465 (1990).

^{175} M. Ljungberg and S-E. Strand, "Attenuation correction in SPECT based on transmission studies and Monte Carlo simulations of build-up functions," J. Nucl. Med. **31**, 493-500 (1990).

^{176} C. Miller, L. Filipow, S. Jackson, T. Riauka "Planar imaging quantification using 3D attenuation correction data and Monte Carlo simulated buildup factors," Phys. Med. Biol. **41**, 1401-1423 (1996).

^{177} J. Q. Luo, K. F. Koral, M. Ljungberg, C. E. Floyd, R. J. Jaszczak, "A Monte Carlo investigation of dual-energy-window scatter correction for volume-of-interest quantification in ^{99m}Tc SPECT," Phys. Med. Biol. **40**, 181-199 (1995).

^{178} M. Ljungberg and S-E. Strand, "Scatter and attenuation correction in SPECT using density maps and Monte Carlo simulated scatter functions," J. Nucl. Med. **31**, 1560-1567 (1990).

^{179} M. Ljungberg, S-E. Strand, "Attenuation and scatter correction in SPECT for sources in a nonhomogeneous object: A monte Carlo study," J. Nucl. Med. **32**, 1278-1284 (1991).

^{180} H. Naude, A. van Aswegen, C. P. Herbst, M. G. Lotter, P. H. Pretorius, "A Monte Carlo evaluation of the channel ratio scatter correction method," Phys. Med. Biol. **41**, 1059-1066 (1996).

^{181} A. Welch, G. T. Gullberg, P. E. Christian, F. L. Datz, H. T. Morgan, "A transmission-map-based scatter correction technique for SPECT in inhomogeneous media," Med. Phys. **22**, 1627-1635 (1995).

^{182} M. S. Kaplan, R. S. Miyaoka, S. K. Kohlmyer, D. R. Haynor, R. L. Harrison, T. K. Lewellen, "Scatter and attenuation correction for ^{111}In based on energy spectrum fitting," Med. Phys. **23**, 1277-1285 (1996).

^{183} G. S. Hademenos, M. A. King, M. Ljungberg, I. G. Zubal, C. R. Harrell, "A scatter correction method for T1-201 images: A Monte Carlo investigation," IEEE Trans. Nucl. Sci. **40**, 1179-1186 (1993).

^{184} K. Ogawa, "Simulation study of triple-energy-window scatter correction in combined Tl-201, Tc-99m SPECT," Ann. Nucl. Med. **8**, 277-281 (1994).

^{185} G. J. Hademenos, M. Dahlbom, E. J. Hoffman, "Simultaneous dual-isotope technetium-99m/thallium-201 cardiac SPET imaging using a projection-dependent spilldown correction factor," Eur. J. Nucl. Med. **22**, 465-472 (1995 ).

^{186} M. Ljungberg, P. Msaki, S-E. Strand, "Comparison of dual-window and convolution scatter correction techniques using the Monte Carlo method," Phys. Med. Biol. **35**, 1099-1110 (1990).

^{187} M. Ljungberg, M. A. King, G. J. Hademenos, S. E. Strand, "Comparison of four scatter correction methods using Monte Carlo simulated source distributions," J. Nucl. Med. **35**, 143-151 (1994).

^{188} I. Buvat, M. Rodriguez-Villafuerte, A. Todd-Pokropek, H. Benali, Di Paola R, "Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations," J. Nucl. Med. **36**, 1476-1488 (1995).

^{189} Y. Narita, S. Eberl, H. Iida, B. F. Hutton, M. Braun, T. Nakamura, G. Bautovich, "Monte Carlo and experimental evaluation of accuracy and noise properties of two scatter correction methods for SPECT," Phys. Med. Biol. **41**, 2481-2496 (1996).

^{190} J. Logan, H. J. Bernstein, "A Monte Carlo simulation of Compton scattering in positron emission tomography," J. Comput. Assist. Tomogr. **7**, 316-320 (1983).

^{191} D. Acchiappati, N. Cerullo, R. Guzzardi, "Assessment of the scatter fraction evaluation methodology using Monte Carlo simulation techniques.," Eur. J. Nucl. Med. **15**, 683-686 (1989).

^{192} C. Moisan, P. Tupper, J. G. Rogers, and J. K. de Jong, "A Monte Carlo study of the acceptance to scattered events in a depth encoding PET camera," IEEE Trans. Nucl. Sci. **43**, 1974-19 (1996).

^{193} J. S. Barney, J. G. Rogers, R. Harrop, H. Hoverath, "Object shape dependent scatter simulations for PET," IEEE Trans. Nucl. Sci. **38**, 719-25 (1991).

^{194} L. E. Adam, M. E. Bellemann, G. Brix, W. J. Lorenz, "Monte Carlo-based analysis of PET scatter components," J. Nucl. Med. **37**, 2024-2029 (1996).

^{195} S. I. Ziegler and W. K. Kuebler, "Monte Carlo simulation of the scatter component in small animal positron volume-imaging devices," Med. Phys. **3**, 83-87 (1993).

^{196} C. S. Levin, M. Dahlbom, E. J. Hoffman, "A Monte Carlo correction for the effect of Compton scattering in 3-D PET brain imaging," IEEE Trans. Nucl. Sci. **42**, 1181-1188 (1995).

^{197} D. R. Haynor, R. L. Harrison and T. K. Lewellen, "Energy-based scatter correction for 3D PET: A Monte Carlo study of best possible results," in Conf. Rec. of the International Meeting in Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Nemacolin Woodlands, 1997, eds P. Kinahan and D. Townsend, pp. 52-54, (UPMC, Pittsburgh, 1997).

^{198} M. J. Berger, "MIRD pamphlet 2: energy deposition in water by photons from point isotropic sources," J. Nucl. Med. **9**, 15-25 (1968).

^{199} M. J. Berger, "MIRD pamphlet 7: distribution of absorbed doses around point sources of electrons and beta particles in water and other media," J. Nucl. Med. **12**, 5-23 (1971).

^{200} W Snyder, MR Ford, G Warner, "Estimates of specific absorbed fractions for photon sources uniformly distributed in various organs of a heterogeneous phantom. NM/MIRD Pamphlet No. 5, (Society of Nuclear Medicine Publication, New York, 1978).

^{201} M. Cristy, "Applying the reciprocal dose principle to heterogeneous phantoms: practical experience from Monte Carlo studies," Phys. Med. Biol. **28**, 1289-1303 (1983).

^{202} A. Aissi, J. W. Poston, "Comparison of measured and calculated internal absorbed doses in a heterogeneous phantom," Phys. Med. Biol. **32**, 1245-1256 (1987).

^{203} M. Cristy and K. F. Eckerman, "Specific absorbed fractions of energy at various ages from internal photon sources," Report ORNL/TM 8381/V1-V7 Oak Ridge, TN. (1987).

^{204} J. W. Poston, K. A. Kodimer, W. E. Bolch, "A revised model for the calculation of absorbed energy in the gastrointestinal tract," Health Phys. **71**, 307-314 (1996).

^{205} A. N. Bice, J. M. Links, D. F. Wong, H. N. Wagner, "Absorbed fractions for dose calculations of neuroreceptor PET studies," Eur. J. Nucl. Med. **11**, 127-131 (1985).

^{206} P. K. Leichner, C. S. Kwok, "Tumor dosimetry in radioimmunotherapy: methods of calculation for beta particles," Med. Phys. **20**, 529-534 (1993).

^{207} G. Akabani, J. W. Poston, W. E. Bolch, "Estimates of beta absorbed fractions in small tissue volumes for selected radionuclides," J. Nucl. Med. **32**, 835-839 (1991).

^{208} J. C. Johnson, S. M. Langhorst, S. K. Loyalka, W. A. Volkert and A. R. Ketring, "Calculation of radiation dose at a bone to marrow interface using Monte Carlo modeling techniques (EGS4)," J. Nucl. Med. **33**, 623-628 (1992).

^{209} C. S. Kwok, P. J. Bialobzyski, S. K. Yu, W. V. Prestwich, "Effect of tissue inhomogeneity on dose distribution of point sources of low-energy electrons," Med. Phys. **17**, 786-793 (1990).

^{210} C. S. Kwok, P. J. Bialobzyski, S. K. Yu, "Effect of tissue inhomogeneity on dose distribution of continuous activity of low-energy electrons in bone marrow cavities with different topologies," Med. Phys. **18**, 533-541 (1991).

^{211} B. L. Werner, C. S. Kwok, I. J. Das, "Dose distributions in regions containing beta sources: large spherical source regions in a homogeneous medium," Med. Phys. **15**, 358-363 (1988).

^{212} B. L. Werner, M. Rahman, W. N. Salk, C. S. Kwok, "Dose distributions in regions containing beta sources: uniform spherical source regions in homogeneous media," Med. Phys. **18**, 1181-1191 (1991).

^{213} T. R. Mackie, A. F. Bielajew, D. W. Rogers, J. J. Battista, "Generation of photon energy deposition kernels using the EGS Monte Carlo code," Phys. Med. Biol. **33**, 1-20 (1988).

^{214} G. Sgouros, S. Chiu, K. S. Pentlow, L. J. Brewster, H. Kalaigian, B. Baldwin, F. Daghighian, M. C. Graham, S. M. Larson, R. Mohan, "Three-dimensional dosimetry for radioimmunotherapy treatment planning," J. Nucl. Med. **34**, 1595-1601 (1993).

^{215} M. J. Berger, "Improved point kernel for electrons and Beta-ray dosimetry," Rep. NBSIR pp 73-107 (1973).

^{216} W. G. Cross, N. O. Freedman, P. Y. Wong, "Beta-ray dose distributions from point sources in an infinite water medium," Health Phys. **63**, 160-171 (1992).

^{217} D. J. Simpkin, T. R. Mackie "EGS4 Monte Carlo determination of the beta dose kernel in water," Med. Phys. **17**, 179-186 (1990).

^{218} D. J. Simpkin, S. J. Cullom, T. R. Mackie, "The spatial and energy dependence of bremsstrahlung production about beta point sources in H2O," Med. Phys. **19**, 105-114 (1992).

^{219} P. K. Leichner, "A unified approach to photon and beta particle dosimetry," J. Nucl. Med. **35 **1721-1729 (1994).

^{220} E. E. Furhang, G. Sgouros, C. S. Chui, "Radionuclide photon dose kernels for internal emitter dosimetry" Med. Phys. **23**, 759-764 (1996).

^{221} M. G. Stabin, "MIRDOSE: personal computer software for internal dose assessment in nuclear medicine," Nucl. Med. **37**, 538-546 (1996).

^{222} T. K. Johnson, "MABDOS: a generalized program for internal radionuclide dosimetry," Comput. Meth. Progr. Biomed. **27**, 159-167 (1988).

^{223} T. K. Johnson, R. L. Vessella, "On the possibility of 'real-time' Monte Carlo calculations for the estimation of absorbed dose in radioimmunotherapy," Comput. Meth. Progr. Biomed **29**, 205-210 (1989).

^{224} T. K.Johnson and S. B. Colby, "Photon contribution to tumor dose from considerations of 131I radiolabeled antibody uptake in liver, spleen, and whole body," Med. Phys. **20**, 1667-1674 (1993).

^{225} G. Akabani, J. W. Poston, "Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides," J. Nucl. Med. **32**, 830-834 (1991).

^{226} G. Akabani, "Absorbed dose calculations in Haversian canals for several beta-emitting radionuclides," J. Nucl. Med. **34**, 1361-1366 (1993).

^{227} M. G. Stabin, "Radiation dose to the upper spine from therapeutic administrations of iodine-131-sodium iodide," J. Nucl. Med. **34**, 695-696 (1993).

^{228} R. C. Samaratunga, S. R. Thomas, J. D. Hinnefeld, L. C. von Kuster, D. M. Hyams, J. S. Moulton, M. I. Sperling and H. R. Maxon, "A Monte Carlo simulation model for radiation dose to metastatic skeletal tumour from rhenium 186(Sn) HEDP," J. Nucl. Med. **36**, 336-50 (1995).

^{229} L. S. Johnson and J. C. Yanch, "Calculation of beta dosimetry in radiation synovectomy using Monte Carlo simulation (EGS4)," Med. Phys. **20**, 747-754 (1993).

^{230} L. S. Johnson, J. C. Yanch, S. Shortkroff, C. L. Barnes, A. I. Spitzer, C. B. Sledge "Beta-particle dosimetry in radiation synovectomy," Eur. J. Nucl. Med. **22**, 977-988 (1995).

^{231} H. B. Giap, D. J. Macey, J. E. Bayouth, A. L. Boyer, "Validation of a dose-point kernel convolution technique for internal dosimetry," Phys. Med. Biol. **40**, 365-381 (1995).

^{232} G. Akabani, W. G. Hawkins, M. B. Eckblade, P. K. Leichner, "Patient-specific dosimetry using quantitative SPECT imaging and three-dimensional discrete Fourier transform convolution," J. Nucl. Med. **38**, 308-314 (1997).

^{233} M. Tagesson, M. Ljungberg and S.-E. Strand, "A Monte Carlo program converting activity distributions to absorbed dose distributions in a radionuclide treatment planning system," Acta Oncol. **35**, 367-372 (1996).

^{234} H. B. Giap, D. J. Macey, D. A. Podoloff, "Development of a SPECT-based three-dimensional treatment planning system for radioimmunotherapy," J. Nucl. Med. **36**, 1885-1894 (1995).

^{235} K. S. Kolbert, G. Sgouros, A. M. Scott, J. E. Bronstein, R. A. Malane, J. Zhang, H. Kalaigian, S. McNamara, L. Schwartz, S. M. Larson, "Implementation and evaluation of patient-specific three-dimensional internal dosimetry," J. Nucl. Med. **38**, 301-308 (1997).

^{236} E. E. Furhang, C. S. Chui, G. Sgouros, "A Monte Carlo approach to patient-specific dosimetry," Med. Phys. **23**, 1523-1529 (1996).

^{237} J. L. Humm, "A microdosimetric model of astatine-211 labeled antibodies for radioimmunotherapy," Int. J. Radiat. Oncol. Biol. Phys. **13**, 1767-1773 (1987).

^{238} E. R. Humphreys, and J. L. Humm, "A Monte-Carlo approach to the microdosimetry of ^{224}Ra in murine compact and cancellous bone," Health Phys. **54**, 607-615 (1988).

^{239} J. J. Casciari, M. M. Graham, J. S. Rasey, "A modeling approach for quantifying tumor hypoxia with [F-18]fluoromisonidazole PET time-activity data," Med. Phys. **22**, 1127-1139 (1995).

^{240} P. Millet, J. Delforge, S. Pappata, A. Syrota, L. Cinotti, "Error analysis on parameter estimates in the ligand-receptor model: application to parameter imaging using PET data," Phys. Med. Biol. **41**, 2739-2756 (1996).

^{241} C. Burger and A. Buck, "Tracer kinetic modelling of receptor data with mathematical metabolite correction," Eur. J. Nucl. Med. **23**, 539-545 (1996).

^{242} J. A. Thie, G. T. Smith, K. F. Hubner, "Linear least squares compartmental-model-independent parameter identification in PET," IEEE Trans. Med. Imag. **16**, 11-16 (1997).

^{243 }A. Welch, A. M. Smith and G. T. Gullberg, "An investigation of the effect of finite system resolution and photon noise on the bias and precision of dynamic cardiac SPECT parameters," Med. Phys. **22**, 1829-1836 (1995).

^{244} G. L. Zeng, G. T. Gullberg and R. H. Huesman, "Using linear time-invariant system theory to estimate kinetic parameters directly from projection measurements," IEEE Trans. Nucl. Sci. **42 **2339-2346 (1995).

^{245} P. C. Chiao, W. L. Rogers, N. H. Clinthorne, J. A. Fessler and A. O. Hero, "Model-based estimation for dynamic cardiac studies using ECT," IEEE Trans. Med. Imag. **13**, 217-226 (1994).

^{246}** **R. H. Huesman, B. W. Reutter, G. L. Zeng, G. T. Gullberg, "Kinetic parameter estimation from SPECT cone-beam projection measurements," Phys. Med. Biol. **43**, 973-982 (1998)

^{247} K. Ogawa, S. Takahashi, Y. Satori, "Description of an object in Monte Carlo simulations," IEEE Trans. Nucl. Sci.**44**, 1521-1526 (1997).

^{248} H. Wang, RJ Jaszczak, RE Coleman, "Solid geometry-based object model for Monte Carlo simulated emission and transmission tomographic imaging systems," IEEE Trans. Med. Imag. **11**, 361-372 (1992).

^{249} H. Wang, R. J. Jaszczak, R. E. Coleman, "A new composite model of objects for Monte Carlo simulation of radiological imaging," Phys. Med. Biol. **38**, 1235-1262 (1993).

^{250} N. Amokrane and M. Bourguignon, "A new object model for Monte Carlo simulation of SPECT imaging system," in 1994 Conf. Rec. IEEE Med. Imag. Conf., pp 1297-1300 (1995).

^{251} Z. Li, J. F. Williamson, "Volume-based geometric modeling for radiation transport calculations," Med. Phys. **19**, 667-677 (1992).

^{252} K. Ogawa and S. Maeda, "A Monte Carlo method using Octree structure in photon and electron transport," IEEE Trans. Nucl. Sci. **42**, 2322-2326 (1995).

^{253} G. Williams, M. Zankl, W. Abmayr, R. Veit, G. Drexler, "The calculation of dose from external photon exposures using reference and realistic human phantoms and Monte Carlo methods", Phys. Med. Biol. **31**, 449-452 (1986).

^{254} ICRP, "Report of the Task Group on Reference Man," International Commission on Radiological Protection publication 23. (Pergamon Press, New York, 1975).

^{255} L. G. Bouchet, W. E. Bolch, D. A. Weber, H. L. Atkins, J. W. Poston, "A revised dosimetric model of the adult head and brain," J. Nucl. Med. **37**, 1226-1236 (1996).

^{256} W. Q. Sui , F. L. Shen, "Computer model of an inhomogeneous human torso," J. Biomed. Eng. **12**, 124-128 (1990).

^{257} K. J. LaCroix, Evaluation of an attenuation compensation method with respect to defect detection in Tc-99m-sestamibi myocardial SPECT. (Ph.D Dissertation, The University of North Carolina at Chapel Hill. Chapel Hill, NC 1997).

^{258} M. Zankl, R. Veit, G. Williams, K. Schneider, H. Fendel, N. Petoussi and G. Drexler, "The construction of computer tomographic phantoms and their application in radiology and radiation protection," Radiat. Environ. Biophys. **27**, 153-64 (1988).

^{259} E. J. Hoffman, P. D. Cutler, W. M. Digby, and J. C. Mazziotta, "3-D phantom to simulate cerebral blood flow and metabolic images for PET," IEEE Trans. Nucl. Sci. **37**, 616-620 (1990).

^{260} H. J. Kim, B. R. Zeeberg, F. H. Fahey, A. N. Bice, E. J. Hoffman, R. C. Reba "Three-dimensional SPECT simulations of a complex three-dimensional mathematical brain model and measurements of the three-dimensional physical brain phantom," J. Nucl. Med. **32**, 1923-1930 (1991).

^{261} I. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi, B. P. Hoffer, "Computerized 3-Dimensional segmented human anatomy," Med. Phys. **21**, 299-302 (1994).

^{262} M. Ivanovic and D. A. Weber, "Monte Carlo simulation code for SPECT imaging of uniform and nonuniform media and source distribution," Nuclear Medicine in Research and Practice, Nuklear Medizine Supp. 28, HAE Schmid and R Hoffer, eds., pp. 60-63, (1992).

^{263} W. R. Nelson, H. Hirayama, D. W. O. Rogers, "The EGS4 code system," SLAC-256. Stanford Linear Accelerator Center, Stanford, California (1985).

^{264} J. A. Halbleib, R. P. Kensek, G. D. Valdez, S. M. Seltzer, and M. J. Berger, "ITS: The Integrated TIGER Series of electron/photon transport codes - version 3.0," IEEE Trans. Nucl. Sci. **39**, 1025-1030 (1992).

^{265} J. F. Briesmeister, "MCNP - A general monte carlo code for neutron and photon transport," Version 3A. Los Alamos, NM: Los Alamos National Laboratory; LA-12625-M (1997).

^{266} J. C. Yanch, A. B. Dobrzeniecki, "Monte Carlo simulation in SPECT: Complete 3-D modeling of source, collimator and tomographic data acquisition," IEEE Trans. Nucl. Sci. **40**, 198-203 (1993).

^{267} M. F. Smith, C. E. Floyd, R. J. Jaszczak, "A vectorized Monte Carlo code for modeling photon transport in SPECT," Med. Phys. **20**, 1121-1127 (1993).

^{268} M. F. Smith, "Modelling photon transport in non-uniform media for SPECT with a vectorized Monte Carlo code," Phys. Med. Biol. **38**, 1459-1474 (1993).

^{269} A. Passeri, A. R. Formiconi, M. T. De Cristofaro, A. Pupi, U. Meldolesi, "High-performance computing and networking as tools for accurate emission computed tomography reconstruction," Eur. J. Nucl. Med. **4**, 390-397 (1997).

^{270} C. S. Ierotheou, S. P. Johnson, M. Cross, and P. F. Leggett "Computer aided parallelisation tools (CAPTools) - conceptual overview and performance on the parallelisation of structured mesh codes," Parallel Computing **22**, 163-195 (1996).

^{271} V. C. Bhavsar and J. R. Isaac, "Design and analysis of parallel Monte Carlo algorithms," SIAM J. Statistical and Scientific Computing. 81, **73-95 **(1987).

^{272} J. J. Dongarra, "Performance of various computers using standard linear equations software," Report CS-89-85 (ORNL, Mathematical sciences section, 1998).

^{273} A. F. Bielajew, D. W. Rogers, "A standard timing benchmark for EGS4 Monte Carlo calculations," Med. Phys. **19**, 303-304 (1992).

^{274} A. J. van der Steen and J. J. Dongarra, Overview of recent supercomputers, (NCF/Utrecht University Report, The Netherlands1998).

^{275} A. Geist, A. Beguelin, J. Dongarra, *et al*, PVM - A users' guide and tutorial for networked parallel computing, The MIT Press, Boston, 1994.

^{276} M. Snir, S.Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Complete Reference, (The MIT Press, Boston, 1996).

^{277} G. M. Amdahl, "Validity of the single processor approach to achieving large-scale computing capabilities," Proceedings of the American Federation of Information Processing Societies, Washington, DC **30**, pp 483-485 (1967).

^{278} A. De Matteis and S. Pagnutti, "Controlling correlations in parallel Monte Carlo," Parallel Comput. **21**, 73-84 (1995).

^{279} R. Sarno, V. C. Bhavsar, and E. M. A. Hussein, "Generation of discrete random variables on vector computers for Monte Carlo simulations," Int. J. High Speed Computing **2**, 335-350, (1990).

^{280} A. Srinavasan, D. M. Ceperley and M. Mascagni, Random number generators for parallel applications, in Monte Carlo Methods in Chemical Physics, D. Ferguson, J. I. Siepmann and D. G. Truhlar, editors, (Advances in Chemical Physics series, Wiley, New York, 1997).

^{281} A. De Matteis and S. Pagnutti, "A class of parallel random number generators," Parallel Comput. **13**, 193-198 (1990).

^{282} W. R. Martin and F. B. Brown, "Status of vectorized Monte Carlo code for particle transport analysis," Int. J. Supercomputer Appl. **1**, 11-32 (1987).

^{283} C. R. Askew, D. B. Carpenter, J. T. Chalker, et al., "Monte Carlo simulation on transputer arrays," J. Parallel Computing **6**, 247-258 (1988).

^{284} Ch. Ma, "Implementation of a Monte Carlo code on a parallel computer system," Parallel Computing **20**, 991-1005 (1994).

^{285} F. B. Brown and W. R. Martin, "Monte Carlo methods for radiation transport analysis on vector computers," Progr. Nucl. Energy **14**, 269-299 (1984).

^{286} K. Miura, "EGS4V: vectorization of the Monte Carlo cascade shower simulation code EGS4," Comput. Phys. Commun. **45**, 127-136 (1987).

^{287} K. Miura and R. G. Babb, "Tradeoff in granularity and parallelization for a Monte Carlo shower code (EGS4)," Parallel Comput. **8**, 91-100 (1987).

^{288} R. G. Babb and L. Storc, "Developing a parallel Monte Carlo transport algorithm using large-grain data flow," Parallel Comput. **7**, 187-198 (1988).

^{289} D. R. Kirkby and D. T. Delpy, "Parallel operation of Monte Carlo simulations on a diverse network of computers," Phys. Med. Biol. **42**, 1203-1208 (1997).

^{290}Bardies M and Myers EJ, "Computational methods in radionuclide dosimetry," Phys. Med. Biol. ** 41 **, 1941-1955 (1996).

Last update : 29/06/2018