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kDepartment of Physics and Astronomy, University of British Columbia, Vancouver, Canada

Received 11 May 2023; accepted 10 January 2024
Abstract

In positron emission tomography (PET), attenuation and scatter corrections are necessary steps toward accurate quanti-
tative reconstruction of the radiopharmaceutical distribution. Inspired by recent advances in deep learning, many algo-
rithms based on convolutional neural networks have been proposed for automatic attenuation and scatter correction,
enabling applications to CT-less or MR-less PET scanners to improve performance in the presence of CT-related artifacts.
A known characteristic of PET imaging is to have varying tracer uptakes for various patients and/or anatomical regions.
However, existing deep learning-based algorithms utilize a fixed model across different subjects and/or anatomical regions
during inference, which could result in spurious outputs. In this work, we present a novel deep learning-based framework
for the direct reconstruction of attenuation and scatter-corrected PET from non-attenuation-corrected images in the
absence of structural information in the inference. To deal with inter-subject and intra-subject uptake variations in PET
imaging, we propose a novel model to perform subject- and region-specific filtering through modulating the convolution
kernels in accordance to the contextual coherency within the neighboring slices. This way, the context-aware convolution
can guide the composition of intermediate features in favor of regressing input-conditioned and/or region-specific tracer
uptakes. We also utilized a large cohort of 910 whole-body studies for training and evaluation purposes, which is more than
one order of magnitude larger than previous works. In our experimental studies, qualitative assessments showed that our
proposed CT-free method is capable of producing corrected PET images that accurately resemble ground truth images
corrected with the aid of CT scans. For quantitative assessments, we evaluated our proposed method over 112 held-out
subjects and achieved an absolute relative error of 14:30� 3:88% and a relative error of�2:11%� 2:73% in whole-body.

Keywords: PET/CT; Whole-body; Attenuation correction; Deep learning
Geneva University Hospitals, Geneva, Switzerland (I. Shiri); Simon Fraser University,Vancouver, Canada (G. Hamarneh).
irilord@unige.ch (I. Shiri), hamarneh@sfu.ca (G. Hamarneh).

xx–xxx
medi.2024.01.002
emedi

Shiri, C. F. Uribe et al., Enhanced direct joint attenuation and scatter correction of whole-body PET images via context-aware deep networks, Z Med Phys,
4.01.002

mailto:isaac.shirilord@unige.ch
mailto:hamarneh@sfu.ca
https://doi.org/10.1016/j.zemedi.2024.01.002
https://doi.org/10.1016/j.zemedi.2024.01.002


2 S. Izadi et al. / Z Med Phys xxx (2024) xxx–xxx
1 Introduction & related work coefficients are assigned to different tissues inferred from
18F-fluorodeoxyglucose (FDG) positron emission tomog-
raphy (PET) imaging is one of the leading imaging modali-
ties for quantitative in vivo measurement of physiological
and biochemical processes with applications in oncology
[1], cardiology [2] and neurology [3]. Studies reveal that
40–50% of the recorded annihilation coincidences in a typ-
ical whole-body PET scan are affected by Compton scatter
where one or both photons deviate from the original line
of response before reaching the PET detectors [4,5]. The
scattered photons may interact with other surrounding dense
material, such as bed instruments, electronic components,
and patient body, and carry inaccurate information about
the annihilation site [5,6]. Also, scattered photons may fall
out of the pre-defined energy windows and fail to be
recorded by the PET detectors, which leads to photon atten-
uation [5,6]. In either case, the inaccurate number of
detected coincidences contributes to under-estimation or
over-estimation of the tracer distribution, which ultimately
results in inaccurate uptake quantification and notable
visual artifacts in the reconstructed PET images [5]. These
factors can complicate the assessment of PET findings and
may lead to incorrect (false negative/positive) clinical diag-
noses [5]. Accordingly, it is crucial to correct for the loss of
annihilation photons (attenuation correction) and the inac-
curately recorded coincidences (scatter correction) during
image reconstruction [5,7].

With the introduction of PET/CT [8], and more recently
PET/MRI scanners [9], high-resolution anatomical images
from MRI and CT images are leveraged to derive attenuation
and scatter information to obtain attenuation-and-scatter-cor
rected PET images (PET-AC) [6]. In hybrid PET/CT scan-
ners, the Hounsfield units recorded in CT scans can be
directly converted into the PET 511-keV linear attenuation
coefficients [5]. Despite their popularity in routine clinical
practice, the CT-based correction methods have several
drawbacks including the risk of artifact propagation and
position mismatch between PET and CT scans [5,10–12]
and the exposure to ionizing radiation; of particular concern
for pregnant and pediatric patients [5,13,14].

Alternatively, PET/MRI is a non-ionizing imaging tech-
nique that allows enhanced visualization of soft tissue con-
trast without necessitating radiation exposure [15].
However, aside from the relatively more limited availability
of MRI scanning time, the MRI tissue intensities cannot be
transformed into 511 keV linear attenuation coefficients as
in CT-based systems [5,16,17]. To leverage MRI for PET
attenuation correction, segmentation, and registration-based
techniques have been developed [5,16,17]. In
segmentation-based techniques, uniform linear attenuation
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segmenting an MRI image [5,16,18,19]. In the registration-
based methods, an atlas of pre-acquired CT images is used
to obtain an attenuation map template, which is then spa-
tially registered to match the patient’s body using the
anatomical information in the MRI [16,20]. In addition to
the computational overhead, these techniques may deterio-
rate PET reconstruction due to tissue mis-classification,
imprecise co-registration, data truncation, and metal-
induced susceptibility artifacts in CT and/or MR [16,21,6].

Furthermore, enabling CT/MRI-less PET scanners can
open up new possibilities for more compact, affordable
PET-only scanners of the future (e.g. used for screening,
etc.) [5,16,13]. To avoid relying on structural information
captured by CT or MRI during the inference, an attempt
was made to simultaneously reconstruct the tracer distribu-
tion and attenuation maps from the emission data only using
maximum likelihood estimation of uptake and attenuation
(MLAA) [22]. However, MLAA suffers from slow conver-
gence and low signal-to-noise ratio (SNR) [5,23]. Advances
in electronics and scintillation research have augmented
some commercial PET scanners with time-of-flight (TOF)
information. The use of TOF information expedites the con-
vergence time of MLAA and improves SNR [5,24]. Never-
theless, the shortcomings of existing TOF-based algorithms
persist mainly due to the uncertainty in detecting the true
event positions given the limited time resolution of TOF
and high noise [5].

In recent years, the popularity of deep learning (DL) has
ignited extensive research aimed at leveraging the capabili-
ties of neural networks in nuclear medicine [25–31]. The
representative works for attenuation and scatter correction
(ASC) using convolution neural networks (CNN) include
generation of pseudo-CT images from MRI sequences such
as ultra-short echo time (UTE) [32], zero echo time (ZTE)
[33,34], and Dixon sequences [32]. There have been some
recent efforts to directly produce pseudo-CT images from
non-attenuation-corrected images (PET-NC) [35] or uptake
and attenuation maps obtained from MLAA [36,37]. In addi-
tion, several studies have employed more advanced DL-
based techniques, such as generative adversarial networks
(GAN), to boost the performance of pseudo-CT synthesis
[38,39]. Specifically, MedGAN framework [40] was utilized
to approximate PET-NC to pseudo-CT mapping for whole-
body images using paired training data [41]. Recently, meth-
ods based on 3D cycleGAN have been applied to pseudo-CT
synthesis with the goal of circumventing the need for paired
training sets and improving pseudo-CT images by enforcing
inverse consistency [42]. Despite their substantial improve-
ments over traditional algorithms, methods based on GAN
are prone to hallucinating imprecise features in the images
scatter correction of whole-body PET images via context-aware deep networks, Z Med Phys,
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[43] and consequently deteriorate the performance of the
downstream ASC task [44].

Another family of approaches that have recently thrived
in tackling direct ASC is emission-only (PET-NC to PET-
AC) techniques [5,16,13]. These approaches only operate
on PET images or sinograms without requiring any anatom-
ical information [5,16,13]. The merits of the encoder-
decoder networks in direct PET-NC to PET-AC mapping
were demonstrated for brain [16] and whole-body
[5,45,13] images. Most recently, Arabi et al. [46] trained a
multi-input network to predict the attenuation coefficient
factors for a reference slice from its different TOF sinogram
bins pertinent to the same slice. Built upon the cycleGAN
framework, some works proposed to improve PET-NC to
PET-AC mapping by restricting the search space through
introducing a reverse network for PET-AC to PET-NC
[47,48].

Most of the DL-based algorithms for direct attenuation
correction adopt either 2D or 3D networks [5,16,13,11,12].
In the former, either individual 2D patches or full-
resolution slices along the axial dimension are processed
by a sequence of 2D convolutional layers while in the latter
the entire volumetric input is manipulated via 3D convolu-
tional layers during the training and inference [5]. Even
though 2D models generally benefit from relatively larger
training data (i.e. slices), they fail to integrate the contextual
coherency within neighboring slices [5]. On the other hand,
3D networks provide the added value of accessing cross-
slice contextual information at the expense of fewer training
samples, higher computational cost, and an increased num-
ber of learnable parameters that can amplify the chances of
over-fitting [5]. Furthermore, the information from distant
organs is often needlessly aggregated when volumetric
inputs are processed by 3D networks. An attempt has been
made to use 2.5D training schemes for low-dose PET
denoising where multiple consecutive slices are fed into
the network to account for cross-slice contextual information
[49]. However, a potential drawback of 2.5D networks is
that the contextual information is aggregated in the very first
layer of the network and thus it is less likely for such infor-
mation to influence deeper layers that have a more direct
impact on the final reconstruction outcome.

Another prominent characteristic of PET images is that
the distribution of the tracer uptake tends to undergo consid-
erable inter-subject variations due to changes in factors such
as the administered dose, imaging time, and reconstruction
parameters. Even the imaging noise and partial volume
effects can also magnify the tracer variations across subjects
[6]. On the other hand, the tracer uptake may also vary sub-
stantially from one organ to another, even though it is nearly
homogeneous inside individual anatomical regions. Despite
such input-dependent variations, the existing DL-based
methods adopt traditional convolution layers to solve the
Please cite this article as: S. Izadi, I. Shiri, C. F. Uribe et al., Enhanced direct joint attenuation and
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ASC problem wherein the learned convolution kernels are
kept fixed over different subjects and body organs during
training and inference.

Recent research in dynamic neural networks [50–52] and
guided filtering [53,54] are promising attempts to produce
context-aware networks. To perform object/activity recogni-
tion from natural images and machine translation, Lin et al.
[52] proposed context-gated convolutions to adapt the con-
volution kernels based on the statistics of the incoming fea-
ture representation. Inspired by these works, we provide an
alternative way to incorporate adequate 3D contextual infor-
mation into 2D networks for CT/MRI-less ASC through
introducing context-aware convolutional layers (CAC). Our
proposed model differs from what mentioned above by (1)
the 3D contextual information within neighboring slices is
used to adaptively modulate the kernels in specific layers
and (2) the network is still in a 2D manner and therefore
enjoys accessing to large training instances as well as light
computation cost at inference. In particular, the neighboring
slices are fed into a shared sub-network to extract the region-
wise information, which is subsequently used to modify the
convolution kernels in an adaptive manner. We use context-
aware convolutions only in the decoder layers instead of the
entire network to achieve superior performance and effi-
ciency trade-off. Patch-based training does not respect the
physics of the attenuation and scatter artifacts and therefore
our proposed network operates on full-resolution 2D slices
in the input layer.

We address the limitations of previous PET-only ACS
works by making the following contributions.

� In contrast to 3D and 2.5D networks, we propose a
2D network that exploits guidance from neighboring
slices to propagate input-conditioned context in the
convolution kernels.

� We propose to adopt a shared sub-network to extract
context information from the set of neighboring slices,
which is then used for convolution modification.

� We leverage channel and spatial interactions to adapt
the convolution kernels based on the extracted con-
textual information.

� We conduct our study on a large cohort of 910 sub-
jects with whole-body PET/CT images that is more
than one order of magnitude larger than previous
works [55,56,37,48].

2 Materials

2.1 Subjects and PET/CT acquisition

Whole-body 18F-FDG PET/CT scan data of 910 subjects
(demographics shown in Table 1) were acquired between
scatter correction of whole-body PET images via context-aware deep networks, Z Med Phys,
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Table 1
Patient demographics of clinical whole-body PET/CT studies enrolled in this study and train/test split information.

Sex No. Age Weight (kg) Injected Dose (MBq/g) Time Post-Injection

mean � std mean � std mean � std mean � std
(min, max) (min, max) (min, max) (min, max)

Train Male 422 48 � 18 76.1 � 16.4 374.7 � 55.1 60 � 14
(6, 87) (21.0, 145.0) (123.2, 488.4) (48, 238)

Female 376 49 � 15 69.5 � 15.0 369.9 �45.3 59 � 10
(2, 85) (11.5, 138.0) (177.6, 555.0) (0, 86)

Test Male 61 45 � 17 75.9 � 14.4 366.4 � 45.2 60 � 11
(11, 74) (25.0, 113.0) (170.2, 469.9) (48, 120)

Female 51 50 � 13 71.7 � 12.0 367.0 �34.7 62 � 17
(23, 74) (50.0, 106.0) (284.9, 444.0) (48, 160)
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2016–2018 on a Siemens Biograph 6 True point scanner
(Siemens Healthineers, Knoxville, TN, USA). To avoid
any interventional effect on diagnosis, treatment or manage-
ment of patients, retrospective use of the scan data and
waiver of consent was approved by Institutional Review
Board (ethic number IR.TUMS.MEDICINE.REC.1398.525
) of our institute (Tehran University of Medical Science).
All patients were intravenously administered 367.74 �
48.87 MBq of 18F-FDG and the PET/CT scanning was per-
formed after an uptake period of 60 � 13 min. To obtain
attenuation-corrected ground truth PET images that leverage
CT-based attenuation maps (PET-CT), a low-dose CT scan
(110 kVp, 145 mAs) was conducted before the PET scan-
ning. PET images were reconstructed using the ordinary
Poisson ordered subsets-expectation maximization (OP-
OSEM) algorithm with 2 iterations and 21 subsets followed
by a 5-mm FWHM Gaussian post-reconstruction smoothing.
Point-spread functions (PSF) were incorporated into the
reconstruction procedure. The matrix size of the recon-
structed images was 168 � 168 with a voxel size of 4.073
� 4.073 � 3 mm2. Single Scatter Simulation (SSS) algo-
rithm was used for scatter correction in all scans. Our data
encompassed patients with various diagnoses, including
Lymphoma (36.3%), colorectal cancer (17.3%), lung cancer
(15.3%), head and neck cancer (13.2%), other conditions
(12.8%), and cases with no metabolic abnormalities (5.1%).

2.2 Data preparation

From the entire cohort, 798 subjects were randomly
selected and split into training and validation cohorts with
a 95:5 ratio, respectively. The validation set was used to
select appropriate values for training hyper-parameters and
to monitor the risk of over-fitting during the training. For
loss calculation, the dynamic range of the PET-NC and
PET-CT images were converted to standardized uptake
value (SUV) based on the injected dose, decay factor, and
patient’s weight available from the DICOM headers [5]. In
our implementation, we used axial slices and cropped each
Please cite this article as: S. Izadi, I. Shiri, C. F. Uribe et al., Enhanced direct joint attenuation and
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to 152 � 152 pixels to shrink the background (without crop-
ping any foreground) and to emphasize the foreground tracer
uptakes. For clinical evaluations, a held-out test cohort con-
sisting of 112 subjects was used. Table 1 summarizes the
patient demographics for training and test cohorts.

3 Methods

We first propose the mathematical formulation of direct
ASC as a supervised image translation problem and intro-
duce the necessary notations. For the solution, i.e. obtaining
PET-AC outputs from PET-NC inputs, we adopt a U-Net
[57] architecture and equip it with the context-aware convo-
lutional layers (CAC). The network is designed to deliver a
solution with specific properties such as efficient use of con-
textual coherency within neighboring slices to the input 2D
slice and handling inter-subject and intra-subject uptake
variability.

3.1 Training overview

Let X ¼ fXn 2 Rh�wgNn¼1 denote a whole-body 3D PET-
NC image consisting of N axial slices each of size h� w
degraded by the attenuation function U, and

Y ¼ fY n 2 Rh�wgNn¼1 be the corresponding reference PET-
CT ground truth (Section 2). The attenuation degradation
function for the n-th slice can be written as:

Xn ¼ UðY n;/Þ; 8n 2 1; 2; . . . ;Nf g ð1Þ
where / indicates the set of parameters associated with the
degradation function. A 2D network for direct attenuation
correction aims to determine a predictive function H, param-
eterized by h, which maps an arbitrary 2D slice in the PET-
NC domain, i.e. X i, to its corresponding slice in PET-AC
domain, Y i. In the conventional 2.5D training scheme, the
network takes in a set of M PET-NC slices

Xm ¼ fX igiþM=2
i�M=2 centered at i-th slice, known as the target

slice, and produces the PET-AC counterpart. Following the
scatter correction of whole-body PET images via context-aware deep networks, Z Med Phys,
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formalism of a supervised training scheme and empirical risk
minimization, we seek h� that minimizes the distance
between Ŷ i and Y i over a training dataset.

3.2 Training details

We trained our network for 5� 104 iterations with a
batch size of 64. To form the training mini-batches, we first
selected random subjects and then picked random individual
2D slices from each subject. The selected 2D slices in the
mini-batch were subsequently coupled with their immediate
previous and next neighbors along the axial dimension.
Adam optimizer with default parameters; b1 ¼ 0:9 and
b2 ¼ 0:999 was used for optimization. The learning rate
was initially set to 7� 10�4 and multiplied by 0.1 at itera-
tions 2� 104 and 3� 104. The network parameters were ini-
tialized with the Kaiming method [58]. We set M ¼ 5 and
optimize the network parameters using mean squared error
(MSE).

3.3 Architecture overview

Fig. 1 depicts the overview of our proposed CA-DAC
network for an efficient attenuation correction. CA-DAC fol-
lows the U-Net architecture with 2b building blocks. In par-
ticular, we employ b blocks in the encoder followed by b
symmetric blocks to form the decoder part. Every encoder
block consists of two standard convolutional layers with ker-
Figure 1. The overall architectu
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nel size 3� 3 and ReLU activations. Furthermore, 2 � 2
max-pooling with stride 2 is used after each encoder block
to downs-sample the feature maps until a bottleneck layer.
For the decoder, the transposed convolutional layer is uti-
lized between consecutive blocks to bring the feature maps
into the original input resolution. Skip connections link the
encoder block to its corresponding decoder block to ensure
improved information flow. We replace the standard convo-
lutional layers in the decoder with CAC layers to incorporate
contextual information while preserving computational effi-
ciency. Each CAC layer takes the 2D input along with its
immediate anterior and posterior neighbors, extracts infor-
mation via a shared sub-network, and modifies the original
convolution kernel by attention map computed through a
global projection, channel interaction, and spatial interac-
tion. Empirically, we set parameter b ¼ 5 and the feature
numbers in the decoder to 32; 64; 128; 256 and 512.

3.4 Context-aware convolution

In general, the input to a standard convolution is a feature
map F 2 Rc�h�w with c input channels, height h, and width
w. Then, a sliding window is swiped over the feature map to
extract local patches of size Rc�k1�k2 with c channels, height
h and width w. Next, the patches are convolved with the ker-
nel weights W 2 Ro�c�k1�k2 to produce the output feature
maps with o output channels. As the weights W in standard
convolution only depend on the local information and are
re of our proposed network.

scatter correction of whole-body PET images via context-aware deep networks, Z Med Phys,
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agnostic to the image context, we propose CAC layers to
mitigate the aforementioned issue with standard convolu-
tions. A CAC layer learns a mapping function that outputs
a context-aware attention map based on the contextual prior
within neighboring input slices. The learned attention map
then adaptively influences the convolution kernel in a net-
work designed for direct ASC. Fig. 2 provides a detailed
illustration of CA layer.

Context Extractor. Here, we focus on the context extrac-
tion module. Although several choices can be considered for
summarizing the contextual information in neighboring
slices, we adopt a shallow network consisting of three 2-
strived standard convolutional layers followed by ReLU
activation for this purpose (Fig. 1-1). This network takes
in the input slices Xm and extract contextual features
F ct 2 Rcct�h0�w0 where h0 ¼ h=8 and w0 ¼ w=8. The
extracted feature tensor F ct are then leveraged in different
instances of the CAC layers to modify kernel weights based
on the contextual information. To improve the efficiency of
the network, we keep the depth of the context extractor mod-
ule to be shallow and share its weights across all instances of
the CAC layers.

Global Projection. As the first component in a CAC
layer (Fig. 2-a), we use a linear layer with weights
W 1 2 Rcct�cin to match the number of channels in F ct to
the channels in the incoming features from the previous layer
and obtain F ctin 2 Rcin�h0�w0. We then use another linear layer
with weights W 2 2 Rh0w0�d followed by ReLU to project
individual flattened channels of size h0w0 in F ctin into a glo-
bal latent representation F c

gp 2 R1�d . Following the bottle-

neck design in [59,52,60], we set d ¼ k1�k2
2 . The weights

W 2 are shared across all channels within a CAC layer to
reduce the number of learnable parameters. The output for
F ctin with cin inputs channels is F gp 2 Rcin�d .
Figure 2. Detailed illustration of the modules

Please cite this article as: S. Izadi, I. Shiri, C. F. Uribe et al., Enhanced direct joint attenuation and
https://doi.org/10.1016/j.zemedi.2024.01.002
Channel Interaction. The second module aims to trans-
form F gp with d channels to the space spanned by the desired
number of output channels, i.e. o (Fig. 2-b). Following [52],

we use a grouped linear layer parametrized by W 3 2 R
d
g�o

g

where g is the number of groups. The module ends with a
ReLU and gives F ch 2 Ro�d as the output.

Spatial Interaction. The input to the third module is both
F gp and F ch, which are decoded to the spatial size of the con-
volution kernel (Fig. 2-c). Similar to [52], we use two linear
layers with weights W 4 2 Rd�k1�k2 and W 5 2 Rd�k1�k2 ,
which are shared across channels in F gp and F ch, respec-
tively. The outputs of the module are F 1

sp 2 Ro�k1�k2 and

F 2
sp 2 Rc�k1�k2 . Then, the final attention map is formed by:

Ah;i;j;k ¼ r F 1
spði; j; kÞ þ F 2

spðh; j; kÞ
� �

ð2Þ

where r represents the sigmoid function. Given that the orig-
inal kernel W 2 Ro�c�k1�k2 and obtained attention mask
A 2 Ro�c�k1�k2 are of the same size, the underlying contex-
tual information within the input slices can be incorporated
into the updated kernel W � through element-wise multiplica-
tion, i.e.:

W � ¼ W � A: ð3Þ
The output feature representations are then obtained by con-
volving the input feature maps F with the updated kernel
W �.

3.5 Evaluation strategy

We measured the quantitative error between the reference
PET-CT and predicted PET-AC outputs using relative error
(RE%) and absolute relative error (ARE%) which are com-
puted as follows:
in the context-aware convolutional layer.

scatter correction of whole-body PET images via context-aware deep networks, Z Med Phys,
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RE% ¼ 1
V

XV
i¼1

PETASCðiÞ � PETCTðiÞ
PETCTðiÞ � 100% ð4Þ

ARE% ¼ 1
V

XV
i¼1

PETASCðiÞ � PETCTðiÞ
PETCTðiÞ

����
����� 100% ð5Þ

where V refers to the total number of voxels, and PETASC

and PETCT indicate the estimated PET-AC images using
DL-based approaches and the CT-based ground truth,
respectively. In addition to the quantification errors, popular
image quality metrics including peak-signal-to-noise-ration
(PSNR) and structural similarity (SSIM) were utilized to
compare the visual similarity of the estimated PET-AC
images against their corresponding PET-CT ground truth
images. These metrics are defined as follows:

PSNR ¼ 10log10
MAX

1
V

XV
i¼1

PETASCðiÞ � PETCTðiÞð Þ2

0
BBBB@

1
CCCCA

ð6Þ

SSIM ¼ ð2lASClCT þ c1Þð2rASC;CT þ c2Þ
ðl2

ASC þ l2
CT þ c1Þðr2

ASC þ r2
CT þ c2Þ : ð7Þ

In Eq. 7, MAX refers to the maximum possible intensity
value in the PET-CT image, and lASC and lCT are the mean
intensity of the PET-AC obtained by different DL-based
ASC approaches and the PET-CT ground truth, respectively.
Also, rASC and rCT indicate the standard deviation in the pre-
dicted PET and CT-based ground truth images, respectively,
and rDL;CT represents the covariance between them. Lastly,
c1 and c2 are constant values to prevent division by very
Figure 3. Quantitative error measured in 6 anatomical regions and wh
subjects in terms of left) RE(%) and right) ARE(%).
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small values (set to default values of c1 ¼ 0:01 and
c2 ¼ 0:03 in our experiments).

For statistical analysis, a joint histogram was plotted to
show the distribution of the measured uptake correlation
between the DL-based predicted PET-AC outputs and the
reference PET-CT ground truth averaged over all patients
in the test cohort. We carried out all the quantitative assess-
ments as well as the joint histogram within the SUV units (g/
mL) in the range of 0.1–20.0. The SUV was calculated as
follows: Image-derived uptake [MBq/mL]/ injection dose
[MBq] � patient’s weight [g].

4 Results

4.1 Quantitative assessment

The performance evaluation of our proposed context-
aware network (CA-DAC) includes validation against the
reference PET-CT ground truth and comparison to a conven-
tional 2.5D UNet (UN-DAC) over a held-out test cohort con-
sisting of 112 subjects across whole-body and 6 anatomical
regions. Fig. 3left) depicts the region-wise analysis of PET-
AC images in terms of average RE for CA-DAC and UN-
DAC. Fig. 3 (right) further illustrates the region-wise assess-
ment of ARE for CA-DAC and UN-DAC approaches. Our
evaluations showed that incorporating the contextual infor-
mation in the decoder layers results in considerable perfor-
mance gain across different anatomical regions of the
body. In the whole-body, the average RE were
2:43� 2:94 and �2:11� 2:73 for UN-DAC and CA-
DAC, respectively. Also, the average ARE reduced from
ole-body for CA-DAC and UN-DAC approaches over 112 heldout
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14:79� 2:37 to 13:96� 2:32 for UN-DAC and CA-DAC,
respectively. We noted that the highest quantification errors
appeared in the chest and lung & liver regions with a mean
relative errors of 3:11� 5:11 and 2:68� 6:40, respectively.
This can be justified by the fact that these regions are often
affected by respiratory motion artifacts during the image
acquisition and thereby both their appearance and tracer
uptake measurements may vary significantly across neigh-
boring slices and ultimately lead to less coherency. The low-
est error occurred in the brain region with a relative error of
�1:05� 5:83.

To quantitatively assess the visual quality of the predicted
PET-AC images against the reference PET-CT images,
Fig. 4 depicts the mean PSNR and mean SSIM in the differ-
ent regions after attenuation correction by CA-DAC and
UN-DAC. From Fig. 3, it is discernible that PET-AC outputs
from CA-DAC are visually more similar to the PET-CT
ground truth. In particular, we observed that CA-DAC out-
performed UN-DAC by 0.71 (dB) averaged over all regions.
Likewise, the SSIM scores averaged over all regions were
improved from 0.9406 to 0.9465 using CA-DAC over
UN-DAC in our evaluation set.

We performed a joint histogram analysis to examine the
correlation between the distribution of the corrected SUV
values from the predicted PET-AC images and that of the
reference PET-CT ground truth. The analysis was carried
out within an SUV range of 0.5 to 12 on a log scale. As
shown in Fig. 5, CA-DAC yields higher accuracy for lower
uptake voxels as the distribution of the correlations exhibits
less variation around the identity line. However, the correc-
tion accuracy starts to drop for both CA-DAC and UN-DAC
in the voxels with higher uptake. The coefficient of determi-
Figure 4. Quantitative error measured in 6 anatomical regions and wh
subjects in terms of left) PSNR and right) SSIM.

Please cite this article as: S. Izadi, I. Shiri, C. F. Uribe et al., Enhanced direct joint attenuation and
https://doi.org/10.1016/j.zemedi.2024.01.002
nation, denoted by R2 was further used to quantify the good-
ness of fit within the joint histograms. In particular, R2 for
CA-DAC and UN-DAC was recorded as 0.982 and 0.963,
respectively, indicating a better fit using the former, i.e. pro-
posed method. Moreover, we performed a linear regression
analysis by reporting the slope and intercept of the line fitted
over the non-zero bins of the joint histograms. The best per-
formance is achieved when the slope and intercept are equal
to 1.0 and 0.0, respectively. As shown in Fig. .5, UN-DAC
yielded 0.81 and 1.30 for the slope and intercepts, respec-
tively, while CA-DAC results in 0.88 and 0.57 demonstrat-
ing an increase of 0.07 for the slope (closer to 1.0) and a
decrease of 0.73 for the intercept (closer to 0.0).

In the next analysis, we studied the impact of context-
aware convolution in adapting the behavior of the network
to the intra-subject uptake variations. Therefore, we approx-
imately extracted 6 anatomical regions for every subject in
the training set using empirical proportional presets over
the whole-body image (brain: 10%, head & neck: 15%,
chest: 20%, lung & liver: 5%, abdomen: 15%, and pelvic:
35%). We then trained 6 different 2.5D networks for each
specific region over the entire training cohort (RGN-DAC)
and evaluated them on a region-specific held-out cohort con-
sisting of 50 subjects randomly selected from the primary
112 subjects. These networks provided us with an approxi-
mation of the upper-bound performance that could be
achieved for each region. We then compared the perfor-
mance of RGN-DAC against UN-DAC and CA-DAC mod-
els trained over whole-body images. As expected, RGN-
DAC and UN-DAC yield the lowest and highest absolute
relative errors, respectively, as shown in Table 2. However,
we observed that context-aware convolutions in CA-DAC
ole-body for CA-DAC and UN-DAC approaches over 112 heldout

scatter correction of whole-body PET images via context-aware deep networks, Z Med Phys,
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Figure 5. Joint histogram analysis displaying the correlation between PET-ASC images from left) CA-DAC and right) UN-DAC versus
reference PET-CT ground truth. Note that a logarithmic scale was used to display the SUV levels.

Table 2
PET quantification error measure across 6 regions for UN-DAC, CA-DAC and RGN-DAC,in terms of absolute relative error (ARE %).

Region UN-DAC CA-DAC RGN-DAC

Brain 18:83� 5:92 17:12� 4:82 16:23� 4:62
Head & Neck 20:73� 4:82 20:04� 4:22 19:27� 5:81
Chest 23:23� 6:61 22:92� 6:87 22:42� 6:34
Lung & Liver 21:92� 6:21 21:34� 5:69 21:01� 5:76
Abdomen 18:48� 4:01 17:59� 4:81 16:36� 4:32
Pelvic 19:66� 5:82 18:83� 6:11 17:94� 5:61
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successfully enable the network to outperform UN-DAC by
0:84 in terms of absolute relative error while still lagging
behind RGN-DAC by 0:73 averaged over all regions.

Table 3 provides the image quality error computed on
whole-body images in three different training schemes,
namely UN-DAC (2D) that takes individual slices as input,
UN-DAC (3D) which applies 3D convolutions on 3D volu-
metric patches of size (64� 64� 64), and our proposed CA-
DAC, which takes individual 2D slices in the input but
adapts the convolution kernels via contextual information.
Among the different approaches, UN-DAC (3D) resulted
in the largest number of parameters (19 M) as it utilized
3D convolutions in the architecture. However, it yielded
0:9792 for SSIM and 32:86 for PSNR, which are not supe-
rior to the scores obtained by our proposed CA-DAC, i.e.
0:97936 for SSIM and 32:97 for PSNR. On the other hand,
UN-DAC (2D) achieved the lowest scores for SSIM
(0:9768), lowest PSNR (32:10), and the smallest number
Please cite this article as: S. Izadi, I. Shiri, C. F. Uribe et al., Enhanced direct joint attenuation and
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of parameters (7.1 M). Compared to UN-DAC, we achieved
superior accuracy with a negligible increase in model com-
plexity (200 K more parameters).

4.2 Qualitative evaluation

For qualitative inspection, we present a comparison of the
visual results by UN-DAC and CA-DAC in Fig. 6. It was
observed that both of these approaches produced visually
indistinguishable results to the naked eye (but not to SSIM
and PSNR) compared to the reference PET-CT. However,
as highlighted in Section 4, a thorough comparison of their
corresponding quantification error maps indicated that UN-
DAC overestimates SUV values in different regions, partic-
ularly in the abdomen region. Notably, AC methods usually
produce considerable artifacts in the liver dome area due to
the local mismatch between the PET and CT images caused
by respiratory motion during the scan time. However, the
error maps in Fig. 6 showed that our novel CAC layer suc-
scatter correction of whole-body PET images via context-aware deep networks, Z Med Phys,
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Table 3
PET quantification error measured in whole-body for UN-DAC (2D), UN-DAC (3D), and CA-DAC in terms of SSIM and PSNR.

Training Scheme SSIM PSNR # Params

UN-DAC (2D) 0:9768� 0:01 32:10� 4:52 7:1M
UN-DAC (3D) 0:9791� 0:01 32:86� 4:01 19 M
CA-DAC 0:9793� 0:01 32:97� 3:79 7:3M

Figure 6. Qualitative comparison of coronal views of the PET images corrected for attenuation and scatter using UN-DAC and CA-DAC.
Top panel provides the PET-NC image, PET-CT ground truth and PET-AC images obtained by UN-DAC and CA-DAC from left to right.
Bottom right depicts the error map for UN-DAC and CA-DAC computed against PET-CT ground truths. Bottom left illustrates the tracer
uptake profile along a line in abdomen region. A warm color map was chosen to improve the visualization of PET images.
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ceeded in alleviating this problem in this error-prone region
compared to UN-DAC. Lastly, Fig. 6 also presents the com-
parison of the horizontal profile drawn through the abdomen
region for PET-CT and the PET-AC images estimated by
CA-DAC and UN-DAC. The profile line by CA-DAC accu-
rately matched the one by the reference PET-CT while the
one by UN-DAC produced over-estimated SUV measure-
ments for both low and high uptake areas. The qualitative
results shown in Fig. 6 were consistent with the quantitative
comparisons, which further demonstrates the effectiveness
and efficiency of our proposed framework for attenuation
correction.

5 Discussion

In clinical practice, automatic attenuation and scatter cor-
rection are essential yet challenging problems in accurate
PET quantification [61,31]. CT and MRI-related artifacts
can impose significant image quality degradation and/or arti-
facts on PET images [11,12]. Artifacts present in anatomical
imaging (CT and MRI) may propagate into corresponding
PET-AC images [11,12]. Respiratory mismatches in the tho-
rax between PET and CT/MRI images induce banana arti-
facts in PET images [5,11,12]. Metallic and contrast agent
material leads to strong streak artifacts and void signals in
CT and MRI, respectively which change information of tis-
sue attenuation/scatter factor, which results in inaccurate
attenuation/scatter correction of PET images [5,11,12].
Truncation artifacts of CT and MRI images appear in
patients whose body size exceeds the transaxial field of view
of MRI/CT images resulting in erroneous PET quantification
[11,12]. These errors, which propagate to the PET images in
the ASC steps of the reconstruction, may not be easily iden-
tified due to the absence of a ”ground truth” [62,11,12].
Finally, the use of compact PET-only scanners (e.g. for
screening purposes) is a possibility in the future if attenua-
tion and scatter correction issues, relying purely on PET
images, can be addressed.

Many algorithms, including traditional and deep learning-
based methods, have been explored to improve PET quan-
tification by correcting for attenuation/scatter artifacts
[61,31]. However, these methods failed to reach an efficient
trade-off between exploiting the contextual information
within neighboring slices and reducing the computational
burden. Also, previous methods could not robustly adapt
their performance in the presence of intra- and inter-
subject uptake variations leading to inferior performance
during inference [5,61,31]. In this work, we proposed to
learn a mapping between individual 2D slices in the PET-
NC and PET-AC domains without access to anatomical
information provided by either CT or MR. We further sug-
gested augmenting the network architecture with CAC layers
Please cite this article as: S. Izadi, I. Shiri, C. F. Uribe et al., Enhanced direct joint attenuation and
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which led to a considerable performance gain as evidenced
by the quantitative and qualitative results. We further uti-
lized a massive cohort consisting of whole-body images
from 910 subjects for training and evaluation. Our study
employed established clinical methods like single-scatter
simulation and CT-based attenuation correction to generate
ground truth images (CT-based attenuation and scatter cor-
rection). Our novel architecture bypasses the traditional
reconstruction process by directly producing attenuated
and scatter-corrected images, taking into account the vari-
ability of different regions in the body.

Some stochastic interaction that causes photons to deviate
from a straight line contributes to the attenuation/scatter arti-
facts [4,31]. In contrast, the tracer uptakes within adjacent
slices are highly correlated and can manifest qualitative
and quantitative complementary patterns to each other.
Therefore, incorporating the contextual information within
neighboring slices into the network can efficiently suppress
the impact of random and scatter coincidences recorded dur-
ing PET image acquisition. In particular, the attenuation and
scatter maps inferred in CAC layers can determine how the
intermediate representations need to be filtered to accurately
restore the PET-AC counterparts. Multiple inputs alone may
not suffice to achieve an accurate PET-AC output. Thus, our
proposed CA-DAC provides a more flexible ASC algorithm
that first restores the missing details in every input slice
through the inferred dynamic filters and then delivers the
final PET-AC estimate for reference slide through eliminat-
ing the leftover artifact using an averaging operation along
slice dimension.

Through extensive quantitative analysis of the obtained
PET-AC images (Fig. 3 and Fig. 4), we showed that our pro-
posed CA-DAC network provided more accurate and robust
SUV quantification in different anatomical regions com-
pared to the baseline. From Table 2, we observe that the rel-
ative error is higher in the lungs, likely due to breathing
motion, and lower in the brain, owing to its relatively more
rigid structure. The qualitative assessment of the predicted
PET-AC images obtained by our proposed CA-DAC
(Fig. 6) revealed that it could achieve the results with
enhanced visual quality, particularly in preserving detailed
textures and removing sophisticated noise solely from
PET-NC inputs. More importantly, visual inspections of
the error maps in Fig. 6 showed that our proposed CA-
DAC could slightly alleviate the quantification error caused
by mismatch artifacts in the liver dome region, which is most
vulnerable to diaphragm and heart motion. Such improve-
ments are important as they ameliorate the treatment of
patients who cannot hold their breath well or patients who
have lesions in the liver dome. Potential biases of deep learn-
ing algorithms should be evaluated, especially in cases
where they might generate inaccurate image corrections.
Previous studies have thoroughly evaluated the potential of
scatter correction of whole-body PET images via context-aware deep networks, Z Med Phys,
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deep learning algorithms in detecting and correcting of dif-
ferent image artifacts in PET images [11,12,62]. In future
studies, we will investigate the capability of CA-DAC to
address other common artifacts in PET imaging including
radio-tracer-related (halo artifact), patient-related (motion,
mismatch, and metal), and instrument-related (truncation)
artifacts [11,12,62]. In particular, our attempt will be focused
on designing an efficient and fast quality assessment tool
with the major objective of detecting and providing quanti-
tative information in regions affected by common artifacts
in PET imaging.

6 Conclusion

In this work, we introduced CA-DAC to produce
attenuation-corrected PET images without requiring any
anatomical information during training and inference. The
novelty of the proposed network is to take advantage of
context-aware convolutions to modulate the convolution ker-
nels based on the contextual information within neighboring
slices along the axial dimension for every 2D input slice.
This way, the network can effectively adapt itself to the
inter- and intra-subject tracer uptake variations with negligi-
ble increase in model complexity. The quantitative and qual-
itative results indicated considerable performance gain
across the whole body and 6 anatomical regions. This algo-
rithm could be potentially used and evaluated in the context
of different PET image artifacts detection and correction
including patient and instrument-related artifacts.
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