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Abstract

Objective: To develop and validate a versatile Monte Carlo (MC)-based dose calculation engine to support MC-based
dose verification of treatment planning systems (TPSs) and quality assurance (QA) workflows in proton therapy.
Methods: The GATE MC toolkit was used to simulate a fixed horizontal active scan-based proton beam delivery (SIE-
MENS IONTRIS). Within the nozzle, two primary and secondary dose monitors have been designed to enable the com-
parison of the accuracy of dose estimation from MC simulations with respect to physical QA measurements. The
developed beam model was validated against a series of commissioning measurements using pinpoint chambers and
2D array ionization chambers (IC) in terms of lateral profiles and depth dose distributions. Furthermore, beam delivery
module and treatment planning has been validated against the literature deploying various clinical test cases of the
AAPM TG-119 (c-shape phantom) and a prostate patient.

Results: MC simulations showed excellent agreement with measurements in the lateral depth-dose parameters and
spread-out Bragg peak (SOBP) characteristics within a maximum relative error of 0.95 mm in range, 1.83% in entrance
to peak ratio, 0.27% in mean point-to-point dose difference, and 0.32% in peak location. The mean relative absolute dif-
ference between MC simulations and measurements in terms of absorbed dose in the SOBP region was 0.93% + 0.88%.
Clinical phantom studies showed a good agreement compared to research TPS (relative error for TG-119 planning target
volume PTV-Dgs ~ 1.8%, and for prostate PTV-Dgs ~ —0.6%).

Conclusion: We successfully developed a MC model for the pencil beam scanning system, which appears reliable for dose
verification of the TPS in combination with QA information, prior to patient treatment.

Keywords: Proton therapy; Monte Carlo simulation; active scanning; AAPM TG-119; prostate

1 Introduction pared to conventional radiation therapy owing to the inher-
ent potentials of particles in dose-painting through

There is a globally growing interest in using different escalating the delivered dose to target while sparing normal
types of particles (such as protons and Carbon ions) com- tissues [1-3]. Nowadays, active scanning proton therapy
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(PT), referred to as pencil beam system (PBS), has become a
reliable and preferred method for cancer treatment compared
to conventional passive scattering PT (PSPT) technique,
owing to major advantages in terms of conformal dose dis-
tributions and hence facilitating beam delivery without the
need for multiple field-specific scatterer mechanical hard-
ware [4,5]. Commercially available PT facilities employ
mainly semi-analytic algorithms for dose planning. TPS sim-
plifications incorporated in dose planning in complex situa-
tions, including utilization of aperture (reducing the lateral
penumbra) or range shifter (RS) (shallow tumor treatments),
may lead to large errors between the prescribed dose and
delivered dose. For instance, Nichiporov et al. [6] studied
the range shift and dose perturbation caused by Al, Ti and
Cu exposed to proton beams at various energies. In particu-
lar, for 10 mm Ti, the difference between the calculated and
measured range was 0.1 mm for an exposure at high energy
(194 MeV), whereas the dose perturbation factor was 1.025
in the spread—out Bragg peak region (SOBP). For other
materials, the difference of 0.3 mm between calculated and
measured range was obtained. To ensure correct delivery
of the planned dose through TPS, pre-treatment dose verifi-
cations, called patient-specific QA, are recommended for
clinical workflows [7,8]. However, due to the growing
demand for PT and the increased treatment time, such proce-
dures are less feasible in routine clinical practice. In this con-
text, independently benchmarked and validated MC
simulation tools can be properly utilized for patient-
specific dose monitoring prior to treatment. In this regard,
various MC codes, including FLUKA [9-11], MCNP
[12,13], Geant4 [14,15], and some MC toolkits, such as
GATE and TOPAS [16,17] have been utilized for proton
beam delivery simulation, allowing users to validate and
examine various aspects of beam-material interactions [18—
24]. A substantial body of literature reported on the various
MC models developed for both passive scattering and active
scanning systems of cyclotron and synchrotron-based PT
facilities. In particular, Fiorini et al. [25] used Fluka MC
code for the simulation of cyclotron-based clinical scanning
machine. They reported that compared to experimental mea-
surements, their MC simulations produces more stable
results with smaller bias and lower variance than those
obtained from the TPS. Hence, they proposed to use MC-
based calculations for the evaluation of dosimetric parame-
ters in PT facilities. Fracchiolla et al. [26] used TOPAS
MC toolkit to validate a MC model of a machine using only
commissioning measurements by avoiding nozzle modeling.
Their proposed MC model achieved reasonable results in the
validation phase, for both simple irradiation geometries
(SOBP in water) and modulated treatment fields. In addition,
both MC and TPS results were compared with experimental
measurements with and without RS in terms of Gamma
index. MC modeling reached >95% and >93% Gamma pass

rate with and without RS, respectively. Prusator et al. [27]
developed a simulation model of a compact PT unit with
TOPAS MC toolkit. They reported dosimetric parameters,
such as Integrated Radial profiles as function of Depth
(IRDP), SOBP, and lateral profile of dose distributions com-
pared with experimental measurements. The results show
that TOPAS MC toolkit can reproduce the introduced
parameters with a difference of 0.1 cm in range, and SOBP
width with 0.3 cm accuracy, and came up concluding that
the use of MC simulations can be a viable tool in the verifi-
cation of proton treatment planning. Hamad et al. [28] stud-
ied the simulation of Bragg-curves of Carbon ions using the
Geant4 MC toolkit whereas Padilla-Cabal et al. [29] used
GATE/Geant4 MC code for the simulation of proton pencil
beam within a magnetic field. In this study, MC simulations
reached 0.2 mm difference in range and 1.2% deviation of
dose with respect to experimental measurements. The results
of this study showed that GATE can be used as a QA tool in
the Magnetic resonance guidance in PT (MRPT) process
Almhagen et al. [30] simulated an active proton scanning
design to investigate the potential of MC-based models in
software QA and patient-motion studies. Grevillot et al.
[31] developed a MC-based simulator for modeling the Ion
Beam Application (IBA) active scanning PT system using
Beam Data Library [31]. They reported a slight difference
between the simulation results with respect to experimental
measurements using 2D-array IC. Fuchs et al. [32] devel-
oped a computer-driven approach allowing for a simple gen-
eration of a MC beam model of a scanned beam delivery
system using the GATE-RTion MC toolkit. Their results
showed a reasonable agreement between simulations and
measurements, and the developed method can be used by
non-expert users in the field.

In this work, we developed a unified framework for
patient-specific QA framework based on the GATE MC
toolkit. A dosimetric comparison between simulation results
and experimental measurements using pinpoint chambers
and 2D-array IC was performed for validation and bench-
marking. Furthermore, we validated our MC simulator using
two homogeneous phantoms and examined the simulation
results in terms of dose volume histogram (DVH) parameters
against the results available from matRad TPS [33] for the
prostate and TG-119 phantom. matRad is an open-source
research TPS written in Matlab based on modified pencil-
beam algorithms [34-36] and a set of MC calculated
physical database for dose calculation [34].

2 Materials and methods
2.1 System description

The Shanghai
synchrotron-based

Advanced PT (SAPT) facility, a
active scanning PT system, was
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simulated in this work. Fig 1 depicts the geometrical charac-
teristics of the SIEMENS IONTRIS system installed at
SAPT. In this system, proton beams are extracted from a
synchrotron and drifted to the nozzle using paired scanning
magnets in the horizontal (X) and vertical (Y) directions that
can scan/guide the beam laterally on the target. The proton
beam spot is moved in the isocenter using the energy stack-
ing technique to cover the target volume at depth. The
energy of this system varies between 70 and 235 MeV
[37,38]. In addition, in case of surface treatment, a 2 cm
PMMA shifter is incorporated in this system [38]. The char-
acteristics of this system are summarized in Table 1.

The proton beam is monitored in real time using two
parallel-plate IC. The spot size and beam optics are mea-
sured using position detectors. Unlike discrete scan mode
(pixel scan), IONTRIS provides a continuous beam scan
mode (raster scan).

2.2 GATE simulations

In this study, The GATE v8.2 MC code alongside with
GEANT4 10.5 p01 was employed since it has been previ-
ously validated for clinical operation of particle therapy sys-
tems [31]. The proton beam and monitoring devices have
been simulated based on the method proposed by Grevilot
et al. [31]. The initial beam (source plane) was set at the noz-
zle entrance immediately in front of the vacuum window.
The angular spread particle sampling strategy was adopted.
The geometry of the ion chamber was simplified to consist
of water with the corresponding water equivalent depth
reported by the manufacturer. Following the approach
described by Parodi et al. [22], the multi-wire proportional
chamber (MWPC) was described as water covered by a 3-
micrometer Tungsten layer representing scattering of low
energy protons in the high-Z Tungsten wires. The simulation
process was performed with a set of pre-built Geant4 physics
lists examining multiple values for production cuts on
secondary products, and step sizes of protons in the water

Table 1

The main characteristics of the SAPT system [37].

Item Value
Energy (MeV) 70-235
Field size (cm?) 40 x 30
Scanning magnet x to isocenter distance (cm) 287
Scanning magnet y to isocenter distance (cm) 242
Nozzle to isocenter distance (cm) 40
Average scan speed in x (cm/ms) 2
Average scan speed in y (cm/ms) 0.5
Dose rate (Gy/min) 2

phantom. The dose-depth metrics obtained from simulations
were compared to measurements taken from clinical com-
missioning of SAPT facility to fine-tune the input simulation
parameters.

According to previous studies, QGSP_BIC module has
been deployed to model hadronic interactions whereas
EMZ (EM stand for Electromagnetic) was used to consider
electromagnetic processes based on the G4EMStan-
dardPhysics_Option4 module [31,39]. In addition, different
values for ionization potential of water have been reported
to directly influence the simulation results [40—45]. The
value of the mean excitation energy for water recommended
in the ICRU report 90 (I=78 ev) was adopted [46-48].

Another parameter that has a direct effect on the accuracy
of calculations and computational time is the cut-off value
for production cuts on secondary particles (electrons, pho-
tons, positrons) after EM interactions. In the water phantom,
we selected different cut-off values varying between 0.001
mm and 0.225 mm. The results showed that selecting a
cut-off value of less than 0.1 mm always leads to an error
of less than 2.1% in the estimates. Similar to the work of
Grevillot et al. [31,43,49,50] and Elia et al.[41,42], we con-
sidered a cut-off value of 0.1 mm for particle transport of
secondary particles (electrons, photons, positrons) after EM
interactions in the water phantom. The cut-off value for
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Figure 1. Simple schematic illustration of the SAPT nozzle [37].
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particle transport was set to 0.075 mm and 0.025 mm for
secondary particles (electrons, photons, positrons) in the
TG-119 and the prostate phantom, respectively. In addition,
the maximum step limiter of protons was set to 0.1 mm in
the water, TG-119, and prostate phantoms. Fig. 2 illustrates
schematically the simulation workflow. In this study, case-
specific dose modeling was conducted in three main parts:
(a) feeding phantom (water or patient anatomical image)
geometry into the simulator using the calibration curve of
Hounsfield Unit (HU)-to-mass density and accordingly the
density map is internally converted into RSP using
G4EMcalculator module [50,51]; (b) treatment plan opti-
mization using the irradiation criteria (prescribed dose to tar-
get and restrictions) and contours obtained from DICOMRT-
structure; and (c) recording 3D dose map and extracting clin-
ically relevant dose-volume parameters.

2.3 Beam characterization and simulation validation

The developed MC simulator was benchmarked against
the experimental measurements reported by Shu et al. [37]
and Sheng et al. [38] and a clinical case study extracted from
the Sanchez-Parcerisa study [33].

2.3.1 Integral radiation profiles as a function of depth (IRPDs)
The dose distribution curves for seven energies in the
range from 70 to 235 MeV were obtained using the water
phantom (MP3-PL, PTW, Freiburg, Germany) with a large
diameter parallel plate chamber (Bragg peak chamber Model
34070, PTW) with a nominal sensitive chamber volume of
10.5 cm in diameter and water equivalent thickness ~ 4
mm. The PEAKFINDER device with a radius of 4.08 cm
was positioned at 5 cm downstream from the nozzle exit.

Contours

The energy of the simulated proton beams was adjusted
between 70 and 235 MeV. In the measurement, the range
(defined as R80) for each IRPD and the clinical range
parameter (R90) were calculated [31].

2.3.2 Optical properties

In the measurements reported by [37,38], a Gafchromic
film was used to quantify the beam spot on the lateral profile
(full-width at half-maximum (FWHM) in X and Y direc-
tions) to benchmark the simulation in terms of spot size,
where a total of 7 energy spot sizes were calculated. The pro-
ton beam was defined as a point source, while a Gaussian-
shaped beam angular spread in X and Y directions was
implemented in the simulation. 2D dose distributions were
scored at the same locations. The resolution of scoring along
the central beam axis was set to 0.36 mm to match the spac-
ing of measurements. The angular spread in the X and Y
directions was adjusted to match the measured FWHM.
Two fourth-order polynomials were used to fit the angular
spread FHWM in X and Y directions as a function of the
nominal energy. The Gafchromic film was simulated
through a very thin titanium plate located perpendicular to
the beam path and the spot size were extracted from the par-
ticle phase space using the Gate Phasespace Actor attached
to planes corresponding to the measured location around
isocenter (i.e. the isocenter plane, 40 cm downstream isocen-
ter, and 20 cm upstream the isocenter plane).

2.3.3 1-D dose profiles in water

Range modulated plans were generated by the TPS
(V13B, Syngo, Siemens) in a water tank. The targets were
considered as cube, and the size of them was set to
3x3x3cm’ and 6 x 6 x 6 cm’, and the center of this

dose

Treatment

Restrictions

planning

GATE Simulator

[ Stopping-power map ]

b
Calibration curve

Dose distribution

Figure 2. Schematic representation of the simulation workflow.
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cubes positioned at 5 cm, and 20 cm, respectively at the
main water phantom. The prescribed dose was set to 0.5
Gy. The RS was located 20 cm before the surface of the
water tank for the range modulated plan with a shallow tar-
get. The plan was delivered to the water tank (MP3-PL,
PTW, Freiburg, Germany). Measurements were performed
using 24 PinPoint chambers (T31015, PTW-Freiburg) at dif-
ferent positions to obtain good extrapolation for depth and
lateral dose profiles. Beam delivery parameters, including
beam energy, scanning cosine angle for X and Y directions,
particle number of each scanning spot, and the energy selec-
tion plan for modulation region were imported to the MC
simulation code. The inverse planning optimization algo-
rithm proposed by Bourhaleb et al. [52] was implemented
to achieve a uniform dose to the target volume. The
absorbed dose distribution per particle was scored. For mea-
suring the lateral profile, a grid dimension was set on the 2
mm?, whereas it was set to 0.1 mm for the Z axis (in depth)
to measure the IRDP curve. To normalize the simulation
results, the routine procedure implemented within GATE
software was used.

2.4 Clinical phantom study

We further validated our MC-based simulator against the
matRad research TPS. This is a multimodality open-source
toolkit for dose calculation and optimization in radiation
therapy, that has been validated against Syngo TPS for
PBS PT [33,34]. Clinical phantom and case studies reported
by Sanchez-Parcerisa et al. [33] were modeled and compared
against the published reference. AAPM (TG-119) C-shape
phantom imported to the GATE TPS source, where the C-
shape PTV intricate around a core structure whose outer sur-
face is 0.5 cm from the inner surface of the PTV. In addition,
a prostate case study, taken from Sanchez-Parcerisa et al.
[33] was simulated. The structure set contains the target
PTV, bladder, rectum, femur, and body. Accordingly, the
TG-119 phantom was prescribed with 50 GyRBE dose to
the PTV (target) and the maximum dose to the 5% of organs
at risk (OARs) with 10 GyRBE (defined as GOAL) [33]. A
single proton field was set on the target. A constant factor of
1.1 was applied to the physical dose to hypothesize the rel-
ative biological effect of protons. For optimization of spot
and beam selection, the inverse planning optimization algo-
rithm [52] was used to uniformly cover the target. The pros-
tate phantom was prescribed with 78 GyRBE dose to the
PTV region using 2 parallel opposed proton fields. Table 2
summarizes the radiation treatment objectives and
restrictions.

595
Table 2
Treatment plan objectives for TG-119 [53] and prostate [54] cases.
Structure Parameter Goal (%)
C-shape PTV V10 <55
V99 50
Core V5 10
Prostate Bladder V70 <35
V50 <60
Rectum V70 <30
V50 <50
Femur V50 <5

Therefore, our simulation has been benchmarked against
values reported by Sanchez-Parcerisa et al. [32] in terms of
DVH parameters. In the case of TG-119 test phantom, Ds
and Dys parameters were extracted from the DVH curve
for each OAR. In the prostate clinical test case, D, and
Dys for the target, D,, and V5 for both bladder and rectum,
and Vs, for the femur have been compared against the
reported values.

The quantitative comparison of dose-volume histogram
parameters was performed based on the relative differences:
—x

") x 100 (1)

RPE = (x"
Xi

where x; and x'; represent the DVH parameters from PBS

system and Sanchez-Parcerisa et al. [33], respectively.

3 Results

3.1 Integral radiation profiles as a function of depth
(IRPDs)

The difference in beam range (R80) between the simu-
lated and experimental results for all 7 simulated energies
was less than 0.95 mm. The obtained curves for 7 energies
within the range 70-235 MeV (70, 130.1, 161.1, 179.9,
202, 219.2, and 235 MeV) are shown in Fig. 3. The peak
to entrance dose ratio, mean point-to-point', Bragg-peak
location, and range deviation between the measurements
and simulation results were compared (Fig. 4). The maxi-
mum deviation of the beam range between the measured
and simulated results was 0.95 mm (at an energy of 235.0
MeV). The mean range deviation was also 0.33 mm. For
mean point-to-point dose difference between the measure-
ments and fitted simulation, the mean value and the maxi-
mum value were 0.21% and 0.27%, respectively. For all
cases, the mean point-to-point deviation value was lower
than 0.5%. The maximum peak-to-entrance dose deviation

1 N di—dyefi A
o=>35, l ’d,.ﬁ,: 1 L

range, and N is the number of data points.

where d; and d,.;; refer to simulations and measurements, respectively, A is the step between two points, L is the maximum
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Figure 3. Comparison of simulated and measured IRPD’s at different energies [37,55].
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Figure 4. Comparison of range, entrance-to-peak dose ratio, mean
point-to-point, and Bragg-peak location deviation between mea-
surements and simulations [37,55].

between measurements and fitted simulation was 1.83% for
proton beam energy of 202 MeV.

3.2 In air spot size

We recalculated the results based on a fitted angular dis-
tribution. The deviation between measurements and fitted
simulations at the isocenter is shown in Fig. 5 (A&B). The
simulated and measured spot sizes in X direction at various
distances from the isocenter for two energies (121.08 MeV
and 221.07 MeV) were presented in Fig. 5C. The mean dif-
ference of FWHM was 2.82% at the isocenter, whereas its
maximum difference was 6.5% at 160.1 MeV proton energy
in the X direction. The mean relative difference of FWHM

was 5.22% at the isocenter, whereas the maximum differ-
ence was 16.4% at proton energy of 160.1 MeV in the Y
direction. The spot size was reproduced within £0.7 mm
for two positions around the isocenter, where the differences
were about —4.52% and 4.2% at 40 cm downstream of the
isocenter and 0.18% and 0.34% at 20 cm upstream of the
isocenter for energies of 221.07 MeV, and 121.8 MeV,
respectively.

3.3 Comparison of 1-D dose profiles

Measured and MC-simulated depth-dose curves along the
central axis and transverse beam profile at the center of the
SOBP cubes are shown in Fig. 6. The results show good
agreement between simulations and measurements. The clin-
ical range difference was 0.22 mm and the 80-20% distal
fall off value difference was 0.11 mm. The mean (SD) and
maximum dose differences of the depth dose profile were
0.93% (0.88%) and 3.53%, respectively, for the measured
points except for points at the distal edge of the SOBP.
The dose differences of the lateral dose profile between sim-
ulations and measurements at the FWHM dose level were
within 2.30%.

3.4 Clinical phantom evaluation

Fig. 7 shows the dose distribution for TG-119 phantom
and a prostate case for the PBS PT plan along with DVH
analysis for the target region and OARs. The color wash is
normalized (TG-119: 30 fractions, each 1.66 Gy, and pros-
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Figure 6. Comparison of the SOBP plan for (a) a longitudinal profile and (b) a transverse profile at the center of the water-filled phantom
[55].

tate case: 78 Gy in 39 fractions). Tables 3 and 4 represent the
DVH-driven parameters obtained from simulations com-
pared to results reported in [33].

4 Discussion

The SAPT system was modeled and simulated using the
GATE MC toolkit. The accuracy of the simulations was val-
idated through comparisons against experimental measure-

ments for multiple parameters based on measurements of
the transverse profile of the absorbed dose in the water phan-
tom, and optical properties in air.

The results showed that there is a good agreement
between simulations and experimental measurements. The
mean deviation of the simulated absorbed dose at the SOBP
region from the corresponding measurements was about
0.93%, which is in agreement with previous studies where
the same order of error magnitude (between 1% and 3%)
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Figure 7. Simulated dose distribution for TG-119 phantom (top) and prostate (bottom) cases in the PBS PT plan along with DVH plots for
target and OARs (solid line, simulation) compared to Ref. [33] (dash line).

Table 3
Quantitative analysis for DVH parameters in the TG-119 phantom.
ROI Ds (Gy) Dys (Gy)
Simulation Sanchez-Parcerisa et al. [33] Diff. (%) Simulation Sanchez-Parcerisa et al. [33] Diff (%)
Target 52.25 49.4 54 50.3 49.4 1.8
OAR 12.3 11.3 8 0 0 0
Table 4
Quantitative analysis for DVH parameters in the prostate case clinical study.
Structure Sanchez-Parcerisa et al. [33] Simulation Dift. (%)
Target D, (Gy) 81.0 81.4 —0.40
Dos (Gy) 75.5 75.0 0.66
Bladder D, (Gy) 87.1 87.2 0.1
V70 (Gy) 19.36 19.5 0.72
Rectum D, (Gy) 88 82.1 6.7
V70 (%) 11.6 11.9 —2.58
Femur Vso (%) 0 0 0

was reported [42,56]. The deviation between the measured
and simulated range was less than 0.95 mm. Elia et al.
[42] reported 0.2 and 0.3 mm range deviation with and with-
out RS between simulations and experiments. In addition,
Almhagen et al. [30] reported a maximum error of 0.2 mm
in range simulation, and Fracchiolla et al. [26] used the
TOPAS MC code for modeling the PBS system and reported

a range difference lower than 1.1 mm. We calculated a
slightly higher deviation between simulated and measured
peak to entrance dose (—1.83%) compared to Elia et al.
(0.4%) [42]. Moreover, Fig. 4 shows that the deviation in
the range, BP location, and peak-to-entrance dose ratio
between the measured and simulated results increased with
increasing the energy. In fact, the selected physics list has
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a nuclear part and an electromagnetic part, and it can be said
that with increasing the energy, the cross-section of the
nuclear part increases, and this factor will cause a deviation
by under/over-estimating the simulations results. The maxi-
mum deviation between the simulated and experimentally
measured spot size was about —4.52% (40 cm downstream
of the isocenter at 221.07 MeV). Fracchiolla et al. [26]
reached an average error of 4% in FWHM estimation,
whereas Elia et al. [41] reported a larger deviation corre-
sponding to 7.2%, and 6.9% in the vertical and horizontal
planes, respectively. The observed deviation in FWHM par-
ticularly for energies higher than 160 MeV can be justified
by the production of secondary particles, especially elec-
trons. The explanation regarding the impact of increasing
the nuclear reactions cross-section at higher energies will
also be true here. In fact, the increase in the cross-
sectional area causes the production of secondary particles
to be estimated, but the production of these particles is not
symmetrical. This asymmetry makes it difficult to measure
the spot size and FWHM for an observer who considers
the same criterion for all energies. Hence, a relatively higher
deviation occurs in the FWHM measurement. According to
Grevillot et al. [31], deviations within 5% between simulated
and measured parameters are within acceptable limits for QA
applications.

We further validated our MC simulations against a
research TPS using phantom and clinical studies. The results
showed that the simulated results obtained from GATE com-
bined with the treatment planning algorithm agree well with
experimental measurements and theoretical evaluations. In
the TG-119 phantom study, we observed a slightly higher
deviation between our results and those reported by
Sanchez-Parcerisa et al. [33] (~6.7%). This deviation partic-
ularly in clinical target volume boundaries dose (dose to core)
stems mainly from the dosimetry method. matRad has several
dose calculation algorithms that consider variable relative
biological effect (RBE) for protons, contrary to the above ref-
erence which used the multiRBE model in their simulations,
we applied a constant factor of 1.1 as RBE of protons, which
influences mainly the out-of-field dose.

5 Conclusion

The presented MC-based simulator has been developed
for dose calculation in PBS PT. The simulated plans for
water phantoms and in air studies agree well with experi-
mental measurements performed using various detectors
used in system calibration and validation studies [37,38].
We further validated our MC simulations against a research
TPS using two homogenous phantoms. The results showed
that the simulated results obtained from GATE combined
with the treatment planning algorithm agree well with the
TPS results in the term of DVH and related parameters.

The obtained results prove the capability of the developed
simulator as an independent software QA program that can
be implemented and adopted in the clinical workflow.
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