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Machine learning‑based diagnosis 
and risk classification of coronary 
artery disease using myocardial 
perfusion imaging SPECT: 
A radiomics study
Mehdi Amini 1,8, Mohamad Pursamimi 2,8, Ghasem Hajianfar 1, Yazdan Salimi 1, 
Abdollah Saberi 1, Ghazal Mehri‑Kakavand 3, Mostafa Nazari 2, Mahdi Ghorbani 2*, 
Ahmad Shalbaf 2, Isaac Shiri 1,4 & Habib Zaidi 1,5,6,7*

This study aimed to investigate the diagnostic performance of machine learning‑based radiomics 
analysis to diagnose coronary artery disease status and risk from rest/stress Myocardial Perfusion 
Imaging (MPI) single‑photon emission computed tomography (SPECT). A total of 395 patients 
suspicious of coronary artery disease who underwent 2‑day stress‑rest protocol MPI SPECT were 
enrolled in this study. The left ventricle myocardium, excluding the cardiac cavity, was manually 
delineated on rest and stress images to define a volume of interest. Added to clinical features 
(age, sex, family history, diabetes status, smoking, and ejection fraction), a total of 118 radiomics 
features, were extracted from rest and stress MPI SPECT images to establish different feature sets, 
including Rest‑, Stress‑, Delta‑, and Combined‑radiomics (all together) feature sets. The data were 
randomly divided into 80% and 20% subsets for training and testing, respectively. The performance of 
classifiers built from combinations of three feature selections, and nine machine learning algorithms 
was evaluated for two different diagnostic tasks, including 1) normal/abnormal (no CAD vs. CAD) 
classification, and 2) low‑risk/high‑risk CAD classification. Different metrics, including the area under 
the ROC curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE), were reported for 
models’ evaluation. Overall, models built on the Stress feature set (compared to other feature sets), 
and models to diagnose the second task (compared to task 1 models) revealed better performance. 
The Stress‑mRMR‑KNN (feature set‑feature selection‑classifier) reached the highest performance 
for task 1 with AUC, ACC, SEN, and SPE equal to 0.61, 0.63, 0.64, and 0.6, respectively. The Stress‑
Boruta‑GB model achieved the highest performance for task 2 with AUC, ACC, SEN, and SPE of 0.79, 
0.76, 0.75, and 0.76, respectively. Diabetes status from the clinical feature family, and dependence 
count non‑uniformity normalized, from the NGLDM family, which is representative of non‑uniformity 
in the region of interest were the most frequently selected features from stress feature set for CAD risk 
classification. This study revealed promising results for CAD risk classification using machine learning 
models built on MPI SPECT radiomics. The proposed models are helpful to alleviate the labor‑intensive 
MPI SPECT interpretation process regarding CAD status and can potentially expedite the diagnostic 
process.

OPEN

1Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, 
Switzerland. 2Department of Biomedical Engineering and Medical Physics, Shahid Beheshti University of 
Medical Sciences, Tehran, Iran. 3Department of Medical Physics, School of Medicine, Semnan University 
of Medical Sciences, Semnan, Iran. 4Department of Cardiology, Inselspital, University of Bern, Bern, 
Switzerland. 5University Research and Innovation Center, Obuda University, Budapest, Hungary. 6Department 
of Nuclear Medicine and Molecular Imaging, University of Groningen, University of Medical Center Groningen, 
Groningen, The Netherlands. 7Department of Nuclear Medicine, University of Southern Denmark, Odense, 
Denmark. 8These authors contributed equally: Mehdi Amini and Mohamad Pursamimi. *email: mhdghorbani@
gmail.com; habib.zaidi@hcuge.ch

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-42142-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14920  | https://doi.org/10.1038/s41598-023-42142-w

www.nature.com/scientificreports/

Cardiovascular diseases (CVD) have kept the title of the most common morbidity and the leading cause of 
mortality worldwide for  decades1, with coronary artery disease (CAD) being one of the most lethal  types2. 
Therefore, identifying risk factors for this disease is demanded to take the necessary measures to prevent it. 
Nowadays, several imaging techniques are used to diagnose heart disease, including nuclear medicine, echocar-
diography, computed tomography, and magnetic resonance  imaging3, 4. Myocardial Perfusion Imaging (MPI) 
using single-photon emission computed tomography (SPECT) is a valuable asset for CAD diagnosis since it can 
non-invasively provide a functional assessment of the myocardium and cardiac  arteries5. MPI SPECT captures 
the distribution of intravenously administered 99mTechnetium- methoxyisobutylisonitrile (99mTc-MIBI) in the 
myocardium and surrounding components, which is proportional to the blood perfusion in the  myocardium6–8. 
However, the visual interpretation of MPI SPECT has been shown to be observer-dependent, subject to error, 
and labor-intensive9, 10. Hence, automated objective methods for assessing cardiac MPI SPECT are highly desired.

During the last decade, the exponential increase in the computational power of computers, and the introduc-
tion of the concepts of data mining and big data, have paved the way for the emergence of Artificial Intelligence 
(AI) methods (in general) and Machine Learning (ML) algorithms (in particular) in medical  imaging1. Machine 
learning is identified as a collection of computer algorithms that imitates a particular task only by learning from 
previous experiences without straightforward programmed  instructions11. Theoretically, to develop an ideal 
machine with optimum performance for a particular task, we need to (i) provide a training dataset large enough 
to contain all possible input variations and (ii) identify the proper ML algorithm that best fits the nature of data 
and the desired task.

For diagnosing CAD from MPI SPECT, the input dataset can be conventional quantitative imaging bio-
markers, quantitative high throughput imaging biomarkers known as radiomics, or raw  images1. Conventional 
quantitative imaging biomarkers of MPI SPECT have also been used along with ML algorithms in a number of 
studies for CVD  diagnosis12–16. Arsanjani et al.12 used a boosted ensemble ML algorithm (LogitBoost) fed with 
clinical data and quantitative MPI-SPECT features to improve CAD diagnostic accuracy. Their dataset included 
1181 patients with rest 201Tl/stress 99mTc-sestamibi dual-isotope MPI-SPECT images; 713 cases followed by 
invasive coronary angiography (ICA) (considered abnormal if stenosis > 70%) and 468 cases diagnosed with a 
low likelihood of CAD. Their model achieved an accuracy of 87.3% ± 2.1%, an AUC of 0.94 ± 0.01, a sensitivity 
of 78.9% ± 4.2%, and a specificity of 92.1% ± 2.2%. However, these conventional biomarkers suffer from non-
negligible observer dependency and standardization  issues1. Yet, they might also not reflect a comprehensive 
characterization of the myocardium.

Raw images are suitable to be fed into deep learning models. Papandrianos et al.17 developed deep learn-
ing models to diagnose CAD from MPI-SPECT images. Using the diagnosis retained by two nuclear medicine 
experts, solely based on MPI-SPECT images as the ground truth, they achieved an accuracy of 91.86% with 
their proposed RGB-CNN model. However, despite the superior potential of deep learning models in medical 
image  analysis18, their performance highly depends on the size and heterogeneity of the  dataset19. Gathering 
large datasets is time-consuming and requires collaboration between multiple institutes, which raises legal/
ethical and privacy  issues20.

Radiomics is defined as the conversion of raw images into minable quantitative features, which are representa-
tive of different aspects of the image, such as shape, statistics of the intensities, and  texture21. Indeed, radiomics 
analysis is theoretically capable of extracting comprehensive and complex characteristics of the shape and texture 
of the underlying biology, more than it can be precepted  visually22–24. However, since the introduction of radi-
omics by Gillies et al. in  201025, it has been mainly used for cancer diagnosis and  prognosis26–32, while cardiac 
applications are falling behind. Based on a study by Martin-Isla et al.1 in 2020, who reviewed studies investigating 
image-based cardiac diagnosis with machine learning, only 26.1% have used radiomics, whereas only 15.9% of 
them utilized SPECT modality. Hence, further investigation of ML-based cardiac diagnostic models based on 
MPI SPECT radiomics is desired.

Edalat-Javid et al.33 investigated cardiac SPECT radiomic features’ variability over different image acquisi-
tion and reconstruction protocols. They reported that the variability of features over different imaging settings 
is feature-dependent and identified robust radiomics features for further studies. Sabouri et al.34, 35 studied to 
identify left ventricle contractile patterns using conventional quantitative and radiomic features extracted from 
MPI-SPECT and machine learning algorithms. Their proposed model achieved promising results for detecting 
left ventricle contractile patterns, which can further be used for cardiac resynchronization therapy response 
prediction. Finally, Ashrafinia et al.36 investigated the potential of stress MPI SPECT radiomics for the predic-
tion of coronary artery calcification (CAC) score obtained from diagnostic CT scans and reported satisfactory 
performance of their proposed model combining stress MPI SPECT radiomics and clinical features for the 
prediction of CAC score in all cardiac segments.

In this study, we aim to evaluate the performance of different machine learning models applied to rest, stress, 
and delta MPI SPECT radiomics to diagnose CAD and classify the risk. Accordingly, the performance of multiple 
feature selection (FS) and machine learning algorithms was evaluated and compared to find the optimum model 
for the desired application. The proposed models in this study can be a valuable asset in the clinic by reducing 
the labor and time-consuming MPI SPECT analysis for CAD diagnosis and risk assessment.

Materials and methods
The workflow of the current study is presented in Fig. 1. The following sections are dedicated to the description 
of data acquisition, radiomic features extraction, and diagnostic modeling framework, including feature selection 
methods, machine learning algorithms, and the process of evaluation and comparison of the models.
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Dataset and image acquisition. A total of 395 patients suspicious of coronary artery disease who under-
went 2-day stress-rest protocol MPI SPECT were enrolled in this study. All the data were anonymized and used 
without any intervention on patients’ diagnosis, treatment, or management. The study was approved by the 
institutional review board (IRB) of Shahid Beheshti University of Medical Sciences (IRB code: IR.SBMU.MSP.
REC.1399.368). Informed consent was waived for all subjects by the same IRB listed above. All methods were 
performed in accordance with the relevant guidelines and regulations. To emulate a real clinical scenario, we did 
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Figure 1.  Workflow of the proposed radiomics models for automated diagnosis of coronary artery disease 
and risk classification from rest/stress myocardial perfusion imaging using single-photon emission computed 
tomography.
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not apply any conditional inclusion/exclusion criteria to the dataset. However, it is noteworthy to mention that 
the enrolled dataset did not include patients with myocardial infarction.

SPECT imaging was performed for all patients with a 2-day stress-rest myocardial perfusion protocol. Both 
rest and stress (induced by exercise, dipyridamole, or dobutamine) myocardial perfusion images were included 
in this study. On average, 555 to 925 MBq of 99mTc-MIBI was administered intravenously into patients based on 
published  guidelines37, 38. For exercise stress protocol, the radiopharmaceutical was injected when the patient’s 
heart rate reached 85% of its maximum value. Exercise testing was continued for at least 1 min after injection of 
the radiopharmaceutical to maintain constant maximal cardiac oxygen demand. For the pharmacological stress 
test, dipyridamole was injected at a dose of 0.56 mg/kg over 4 min (or dobutamine at a dose of 5 to 10 µg per 
kilogram every 3 to 5 min), followed by the injection of the radiopharmaceutical after three  minutes39. Image 
acquisition was performed after 15–20 and 60 min post-injection for the exercise and pharmacologic stress 
tests,  respectively40.

The images were acquired on a single-head gamma camera (Intermedical- MULTICAM 1000, Germany) 
imaging system using 32 projections over a 180° arc from right anterior oblique to left posterior oblique, stepping 
30 s for each projection, with a matrix size of 64 × 64 and pixel dimension of 5.357 × 5.357  mm2. Supine stress 
imaging began 15 to 60 min after stress.

Definition of ground truth. Two nuclear medicine physicians reviewed patients’ gated MPI SPECT, addi-
tional clinical information and history, and classified patients as normal or diagnosed with CAD. Moreover, 
CAD positive patients were classified into low-, intermediate-, and high-risk groups. The ground truth was 
established based on a consensus between two physicians, and in cases where there was no agreement, a senior 
nuclear medicine physician made the final decision. Patients’ clinical information included prior MPI SPECT, 
blood pressure, echocardiography results, ECG and exercise test results, hyperlipidemia, Body Mass Index 
(BMI), and diabetes mellitus status. It is noteworthy that the physician had access to the traditional quantitative 
SPECT scores, such as Summed Stress (SSS), Rest (SRS), and Difference Scores (SDS), etc., and wall motion and 
thickening information from the gated datasets and the raw SPECT projections.

The dataset included 78 normal and 317 CAD patients including 135 low-, 127 intermediate, and 55 high-risk 
patients. The patients’ demographic information is summarized in Table 1.

Image segmentation. The left ventricle myocardium, excluding the cardiac cavity, was manually seg-
mented using the 3D-slicer software  package41 by a nuclear medicine technologist with more than ten years of 
experience and edited/verified by an experienced nuclear medicine physician.

Feature extraction. The Image Biomarker Initiative Standardization (IBSI)42 suggests interpolating images 
to isotropic voxel sizes to obtain rotationally invariant also to standardize the voxel size of images. However, 
in our dataset, all scans already had isotropic voxel spacing of 5.357 × 5.357 × 5.357  mm3. Hence, we kept them 
intact to avoid further manipulation of intensities. In addition, intensity levels inside the VOI were discretized to 
64 Gy levels to ease the calculation of texture features. The radiomic features were calculated using Standardized 
Environment for Radiomics Analysis (SERA)43, a MATLAB-based package compliant with the IBSI guideline. 
For the purpose of validating reproducibility, this package has been evaluated in multi-center standardization 
 studies44. A total of 118 features, including 13 intensity-based, 12 intensity histogram (ih), 3 intensity volume 
histogram (ivh), and 90 3D textural features (25  Gy-level co-occurrence matrix (GLCM), 16  Gy-level run 
length matrix (GLRLM), 16 Gy-level size zone matrix (GLSZM), 12 Gy-level distance zone matrix (GLDZM), 
5 neighborhood gray-tone difference matrix (NGTDM), and 16 neighborhood gray-level dependence matrix 
(NGLDM)) were extracted for each VOI. Absolute value First-order statistical features (min, max, average, 
etc.) were considered irrelevant since MPI SPECT images were not  quantitative36. Morphological features were 
also irrelevant since the VOI was the whole left ventricle myocardium. Family, names, and abbreviations of the 
extracted features are listed in Supplementary Table S1.

Table 1.  Clinical characteristics of the patients stratified by the risk of cardiac arterial diseases. The two last 
columns show the p values between defined classes for Task 1 (No CAD vs. positive CAD) and 2 (low-risk vs. 
high-risk patients).

Clinical characteristics Negative Low Intermediate High p value in Task 1 p value in Task 2

Number of patients 78 135 127 55 – –

Gender (Male/Female) 20/58 53/82 48/79 25/30 0.03 0.27

Age (Mean ± SD) 57 ± 8.9 58 ± 10.6 54 ± 10.6 53 ± 10.7 0.2 0.001

Family history (Yes/No) 33/45 61/74 46/81 18/37 0.77 0.11

Smoking (Yes/No) 62/16 83/52 84/43 39/16 < 0.05 0.99

Diabetes 55/23 86/49 73/54 40/15 0.25 0.45

EF (%) 53.4 ± 2.3 53 ± 3 52.7 ± 3.3 51.7 ± 4.2 0.07 < 0.05

Infarcted myocardium 0 0 0 0 – –

Stress (Exercise, Dipyridamole, Dobutamine) 29/49/0 38/94/3 50/68/9 20/34/1 0.7 0.17
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Model establishment. In this section, we introduce different rings in the chain of the proposed automated 
diagnostic framework, including establishment of diagnostic tasks and feature sets, feature selection, classifiers, 
and models’ evaluation process.

Diagnostic tasks establishment. Two diagnostic tasks were defined in this study for the models.
(1) The first task is CAD diagnosis, including classification of patients into negative, and positive CAD (nor-

mal/abnormal classification).
(2) The second task is risk diagnosis, including classification of patients into low-risk (negative, and low-risk 

CAD) and high-risk (intermediate- and high-risk) patients. Table 2 lists the tasks and their descriptions.

Feature set establishment. Rest-, Stress-, Delta-, and combined (combination of all) -radiomics feature sets were 
added to clinical features, including age, sex, family history, diabetes status, smoking status, and ejection fraction 
(calculated from SPECT images) to be fed into different models for diagnosing tasks 1 and 2.

Feature selection. The data were randomly divided into 80% and 20% for training and testing partitions. In 
all models, features extracted from the training dataset were normalized using the Z-score, and the obtained 
mean and standard deviation were applied to the corresponding feature extracted from the test dataset. Many 
of the extracted features may not correlate with the investigated outcome (not relevant features) or may cor-
relate highly with each other (redundant features). These features do not provide new information and should 
therefore be excluded. We used three different FS methods, one filter-based: Maximum Relevance Minimum 
Redundancy (mRMR)45, and two wrapper-based:  Boruta46 and Recursive Feature  Elimination47 with the Ran-
dom Forest as the core machine (RF-RFE). Since the used dataset for task 1 was unbalanced (78 normal and 317 
abnormal patients), after the features were selected, we applied Synthetic Minority Over-sampling Technique 
(SMOTE) on the training data with selected features to correct for plausible  biases48.

Classification. Classification of the patients was performed using nine different machine learning methods, 
namely Decision Tree (DT), Gradient Boosting (GB), K-Nearest Neighbor (KNN), Logistic Regression (LR), 
Multi-Layer Perceptron (MLP), Naïve Bayes (NB), Random Forest (RF), Support Vector Machine (SVM) and 
eXtreme Gradient Boosting (XGB) algorithms. The hyperparameters were optimized in fivefold cross-validation 
in the training data by random-search for models with more than 100 different parameter settings (XGB and 
Random Forest) and grid-search for models with less than 100 different parameter settings. Subsequently, the 
optimum parameters were applied to the test data with 1000 bootstraps. The hyperparameters for each classifier 
and the range of their values are presented in Table 3. All FS and ML models were selected based on their public 
availability to increase the reproducibility of the study.

Performance evaluation. The area under the ROC curve (AUC), accuracy (ACC), sensitivity (SEN), and speci-
ficity (SPE) metrics were used to evaluate the performance of the models. In addition, the performance of the 
best models was statistically compared using the DeLong test (significance threshold < 0.05). All analysis was 
performed using R 4.0 (mlr library version 2.18).

Results
Features analysis. The statistical difference of patient characteristics between cohorts for both task 1 and 
task 2 are shown in Table 1. Chi-Square and Student t test were used for the binarized and continuous data to 
find statistical differences (p value < 0.05 was considered statistically significant).

The number of selected features from each feature family (clinical, statistical, ih, ivh, GLCM, GLRLM, 
GLSZM, GLDZM, NGTDM, and NGLDM), for diagnostic tasks 1 and 2 are shown in Fig. 2.

For task 1, features from GLSZM family were selected the most, followed by GLRLM, NGLDM, and statistical 
families. Among clinical features, none of them were selected significantly more than the others. In the Stress 
feature set (highest performance among Rest, Stress, Delta, and Combined feature sets for task 1), Skew from 
the statistical family (stat-skew), and Large zone low grey level emphasis from the GLSZM family (szm_lzlge), 
were selected by all three FS methods.

For task 2, features from clinical family, followed by NGLDM and GLRLM families were mostly selected. 
Among the clinical features, Diabetes status was selected the most by the different FS methods from the different 
feature sets. In the stress feature set (highest performance among Rest, Stress, Delta, and Combined feature sets 
for task 2), Diabetes status from the clinical family, and Dependence count non-uniformity normalized, from 
the NGLDM family (ngl_dcnu_norm) were selected by all three FS methods.

Table 2.  Defined classification tasks for the models, and distribution of patients in the classes for each task.

Task Name Description Number of patients

#1 Normal/Abnormal classification Normal (Negative) versus Abnormal (Low-risk + Intermediate-risk + High-risk) 78 versus 317

#2 CAD risk classification Low-risk (Negative + Low-risk) versus High-risk (Intermediate-risk + High-risk) 213 versus 182
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Classifiers performance. The performance of all models is reported when applied to the test dataset. Fig-
ures  3 and 4 present AUC, ACC, SEN, and SPE heatmaps showing the performance of the different FS-ML 
models applied to Rest, Stress, Delta, and Combined feature sets, for tasks 1 and 2, respectively.

Table 4 lists the best models (selected by simultaneously considering all four evaluation metrics (AUC, ACC, 
SEN, and SPE)), for Rest, Stress, Delta, and Combined feature sets, for both tasks 1 and 2. For the task of normal/
abnormal classification (task 1), RFE-KNN (as FS-ML algorithms) reached the highest performance on Rest fea-
ture set with AUC, ACC, SEN, and SPE of 0.56, 0.65, 0.71, and 0.41, respectively. The mRMR-KNN achieved the 
best performance for Stress feature set with 0.61, 0.63, 0.64, and 0.6 for AUC, ACC, SEN, and SPE, respectively. 
Boruta-RF achieved the highest performance when applied on Delta feature set with AUC, ACC, SEN, and SPE 
of 0.62, 0.68, 0.72, and 0.54, respectively. RFE-NB achieved the best performance when applied on Combined 
features set, with AUC, ACC, SEN, SPE of 0.6, 0.58, 0.57, 0.6, respectively. Overall, the Stress-mRMR-KNN and 
Delta-Boruta-RF models achieved the best performance for task 1.

Table 3.  Hyperparameters of the classifiers and their used ranges.

Classifier Hyper-parameter Range

XGB

eta 0.025, 0.05, 0.1, 0.3

max_depth 2–10, step = 1

nrounds 50–1000, step = 50

colsample_bytree 0.4, 0.6, 0.8, 1.0

subsample 0.5, 0.75, 1.0

gamma 0, 0.05, 0.1, 0.5, 0.7, 0.9, 1.0

min_child_weight 1, 2, 3

DT
minsplit 5–20, step = 1

minbucket 3–10, step = 1

KNN k 1–12, step = 1

GB mstop 50–500, step = 50

MLP size 1–10, step = 1

RF

ntree 50–1000, step = 50

mtry 1–10, step = 1

nodesize 1–20, step = 1

SVM
cost 0.1–10, step = 0.1

gamma 0.1–10, step = 0.1

LR – –

NB – –
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Figure 2.  Family-wise number of selected features by all three feature selection methods from the Rest, Stress, 
Delta, and combined feature sets.
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For CAD risk classification task (task 2), mRMR-GB reached the highest performance on Rest feature set with 
AUC, ACC, SEN, and SPE of 0.7, 0.63, 0.61, and 0.64, respectively. The Boruta-GB achieved the best performance 
for the Stress feature set with 0.79, 0.76, 0.75, and 0.76 for AUC, ACC, SEN, and SPE, respectively. mRMR-GB 
achieved the highest performance when applied on Delta feature set with AUC, ACC, SEN, and SPE of 0.69, 0.64, 
0.58, and 0.69, respectively. Boruta-LR achieved the best performance when applied on Combined features set, 
with AUC, ACC, SEN, SPE of 0.73, 0.62, 0.58, and 0.65, respectively. Overall, the Stress-Boruta-GB model had 
the best performance for task 2. Figure 5 illustrates the receiver operating characteristic (ROC) curve of the best 
models on Rest, Stress, Delta, and Combined feature sets, for tasks 1 and 2.

Figure 3.  Heatmaps showing the area under the receiver operating characteristic curve (AUC), accuracy 
(ACC), sensitivity (SEN), and specificity (SPE) of different classifiers applied on Rest, Stress, Delta, and 
Combined feature sets for task 1 (Normal/Abnormal diagnosis).

Figure 4.  Heatmaps showing the area under the receiver operating characteristic curve (AUC), accuracy 
(ACC), sensitivity (SEN), and specificity (SPE) of different classifiers applied on Rest, Stress, Delta, and 
Combined feature sets for task 2 (CAD risk diagnosis).
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Statistical comparison of the AUC of the best models from different feature sets using the Delong test is 
presented in Fig. 6 for tasks 1 and 2. As shown in Fig. 6, there was no statistically significant difference between 
the best models based on the Delong test on model AUCs.

Discussion
This study investigated the ability of Rest/Stress myocardial perfusion SPECT radiomics to diagnose patients with 
coronary artery disease and classify them based on their risk. Accordingly, the performance of various combina-
tions of feature selection and machine learning algorithms was evaluated to determine the best combination for 
CAD diagnosis and risk classification using MPI SPECT radiomics.

Three different feature selection methods, one categorized as filter method (mRMR) and two wrapper-based 
methods (RF-RFE and Boruta), were applied to reduce the dimensionality of the radiomics feature sets. While 
the selection process of the filter-based methods is independent of the model’s training process, wrapper-based 
methods use the learning algorithm as a criterion for the evaluation of the feature in order to select the optimum 
subset. In this study, the features selected by the Boruta algorithm yielded superior results for both tasks.

As shown in Fig. 2, for task 1 (normal/abnormal classification), grey level size zone matrix (GLSZM) fea-
tures were the most frequently selected features among all families. The GLSZM features count for the number 
of zones in the region of interest, i.e., a group of neighboring voxels with equal intensities. Large zone low grey 
level emphasis from the GLSZM family (szm_lzlge) was selected by all three FS methods from the stress feature 
set, showing its high relevance with the outcome of interest. This feature can be representative of the presence 
of large zones on the left ventricle, with low levels of MIBI uptake (low perfusion), which may be a result of the 
insufficiency of the blood supply to the ventricle due to CAD. For task 2 (CAD risk classification), clinical features 

Table 4.  Models with highest performance for each task, based on rest, stress, delta, and combined feature 
sets.

Task Feature set Model AUC ACC SEN SPE

1: Normal/abnormal classification

Rest RFE_KNN 0.56 0.65 0.71 0.41

Stress MRMR_KNN 0.61 0.63 0.64 0.6

Delta Boruta_RF 0.62 0.68 0.72 0.54

Combined RFE_NB 0.6 0.58 0.57 0.6

2: CAD low-risk/high-risk classification

Rest MRMR_GB 0.7 0.63 0.61 0.64

Stress Boruta_GB 0.79 0.76 0.75 0.76

Delta MRMR_GB 0.69 0.64 0.58 0.69

Combined Boruta_LR 0.73 0.62 0.58 0.65

Figure 5.  Receiver Operator Characteristic (ROC) curves of the best models for rest, stress, delta, and 
combined feature sets, for (A) task 1 (normal/abnormal classification), and (B) task 2 (CAD low-risk/high-risk 
classification).
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(specifically the diabetes status), followed by features from NGLDM and GLRLM families were mostly selected. 
Diabetes was the most selected by the different FS methods from the different feature sets. The high correlation 
between diabetes and cardiovascular events is well established in the literature, and is one of the major factors 
that affects physicians’ decision on CAD risk  evaluation49. In addition, dependence count non-uniformity nor-
malized, from the NGLDM family (ngl_dcnu_norm) was selected by all three FS methods from the Stress feature 
set. ngl_dcnu_norm is representative of non-uniformity in the region of  interest50, which might reflect different 
levels of perfusion in the left ventricle due to difference in blood supply caused by CAD.

Two different diagnostic tasks were considered in this study. In the first task, patients were classified as 
normal/abnormal based on their CAD status (ground truth: negative CAD vs. low- + intermediate- + high- risk 
CAD). In the second task, patients were classified based on the CAD risk, to low-, and high-risk patients (ground 
truth: negative + low-risk vs. intermediate- + high-risk patients). Overall, the performance of the models for the 
second task was significantly higher (best AUC 0.79 vs. 0.62 for Stress-Boruta-GB vs. Stress-Boruta-RF). There are 
two possible explanations: (1) the dataset for task one was extremely unbalanced (78 vs. 317 normal vs abnormal 
patients). Although we applied Synthetic Minority Over-sampling Technique (SMOTE) on the selected features 
from the training data to correct for plausible biases, as shown in Fig. 3, some models were still biased toward 
false positive prediction, yielding high sensitivity and low specificity, or compensated too much, achieving high 
specificity and low sensitivity. In this regard, Stress-mRMR-KNN, and Delta-Boruta-RF were introduced as the 
models with the best performance since they showed good balance between sensitivity and specificity. (2) Dis-
tinguishing patients with no CAD risk from low-risk patients is a rough task for physicians, coming with high 
inter- and intra-observer variability. Given that the physicians’ interpretation served as ground truth for CAD 
diagnosis, the models also achieved lower performance in this task.

Different feature sets, namely Rest, Stress, Delta, and Combined were evaluated for the defined diagnostic 
tasks. For task 1, Stress and Delta feature sets resulted in the highest performance. For task 2, the Stress feature 
set revealed the highest performance, while the information from the rest images (neither in delta feature set, 
nor in the combined feature set), did not improve the models’ performance.

Deep learning-based algorithms proved promising for the task of analyzing MPI-SPECT images. Berkaya 
et al.51 developed deep learning models to classify MPI-SPECT images into different abnormalities, such as 
infarction and ischemia, and achieved an accuracy of 94%, 88% sensitivity, and 100% specificity. Papandrianos 
et al.17 developed deep learning models to diagnose CAD from MPI-SPECT images and achieved an accuracy 
of 91.86% with the proposed RGB-CNN model. In another  study52, the authors investigated the potential of 
CNNs for classifying MPI-SPECT images into two classes (normal and ischemia) and achieved an AUC of 
93.77% and an accuracy of 90.21%. In this study, we aimed to explore an alternative approach using radiom-
ics analysis. One of the advantages of radiomics lies in the utilization of standardized imaging features based 
on the Image Biomarker Standardization Initiative  guidelines42. By incorporating this broad and standardized 
range of image features, radiomics aimed to capture a more comprehensive representation of the disease and its 
underlying mechanisms, potentially leading to a deeper understanding of the diagnostic process. In addition, 
we attempted to highlight the importance of interpretability and transparency in machine learning models for 
medical applications. Radiomics-machine learning models facilitate the explanation of the decision-making 
process of the model and provide clinicians with insights into the factors contributing to the diagnosis by explain-
ing effective features in the models. This interpretability aspect can be crucial for building trust and acceptance 
of AI-based automated models in clinical practice. This is while deep learning models, such as convolutional 
neural networks, often operate as black boxes, making it challenging to understand the reasoning behind their 

Figure 6.  Statistical comparison of the AUC of the best models in rest, stress, delta, and combined feature sets, 
using the Delong test for: (A) Task 1 (normal/abnormal classification), and (B) task 2 (CAD low-risk/high-risk 
classification).
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predictions. Moreover, deep learning models are more sensitive to the size and heterogeneity of the dataset, 
while gathering large datasets is time-consuming and requires collaboration between multiple institutes, which 
raises legal/ethical, and privacy issues.

In this study, we used features extracted from the whole left ventricle (LV) as input for radiomics-machine 
learning models to diagnose CAD and classify its risk. The right ventricle information was not considered due 
to low uptake in most cases and the fact that the emphasis of the study was on LV coronary diseases. Besides, in 
this study, the LV was not sub-segmented to different walls (e.g., inferior anterior, etc.). This was decided to keep 
a reasonable number of voxels for each VOI, as the whole image matrix was 64 × 64, and sub-segmenting would 
have resulted in a low number of voxels in VOIs, hence meaningless features. However, our proposed models 
still successfully labeled the patients according to the whole LV state.

The ground truth adopted in this study was the physicians’ final diagnosis determined from the gated MPI 
SPECT (including traditional quantitative cardiac SPECT scores, such as SSS, SRS, and SDS, etc., and wall motion 
and thickening information from the gated datasets and the raw SPECT projections) and other patients’ clinical 
information and history. In addition, when necessary, additional SPECT acquisitions with different positioning 
and/or by changing the breast position in female patients were acquired in both rest and stress phases. This was 
performed while our models’ input was radiomic features extracted from only the standard routine supine pro-
tocol image without the traditional quantitative scores, plus the clinical features of the patients (hyperlipidemia 
and BMI were lacking). This demonstrates the strength of the proposed model in diagnosing CAD through rest/
stress MPI SPECT, making it a valuable asset in the clinic. This reduces the complexity of the procedure and 
increases patients’ comfort.

For inducing stress, exercise loading and drug loading can have different effects on myocardial blood flow and 
coronary arteries. Exercise loading increases myocardial blood flow consumption due to increased demand, while 
drug loading, such as pharmacological stress agents, primarily dilates the coronary arteries to simulate stress 
conditions. These loading mechanisms can result in different physiological responses, potentially affecting the 
imaging characteristics captured by SPECT data. In routine clinical protocols, the priority is exercise unless the 
patient cannot go through running Bruce protocol test due to any kind of inability. Dobutamine is the last choice 
for patients unable to do Bruce test, with severe chronic obstructive pulmonary disease or history of allergic 
reactions. The number of patients with different stress inducing methods is reported in Table 1. Except Dobu-
tamine with a very low number of cases, the distribution of patients was almost the same regarding exercise and 
Dipyridamole over the different classes (negative-, low-, intermediate-, and high-risk CAD groups). We included 
all protocol to yield a generalizable model that works on all types of stress. Developing models separately for 
each type of stress induction method might improve the performance of models. However, the number of data 
points in each case was not sufficient to develop robust and reproducible separate models. Hence, we preferred 
to report a general model and let the machine select features which are not affected by the type of stress.

One limitation of this study was that the dataset did not include patients with infarction. Future studies 
should include patients with infarcted myocardium to increase the generalizability of the models. In addition, 
clinical data of the patients in AI models did not include BMI and hyperlipidemia, which are important fac-
tors in coronary artery disease. In addition, the patient cohort was acquired in a single nuclear imaging center 
and the scans were contoured by one nuclear medicine technologist (edited/verified by an experienced nuclear 
medicine physician). As such, inter- and intra-observer variability in the segmentation process was not quanti-
fied. Future works should focus on the characterizing robustness of the proposed models using larger datasets 
from multiple centers.

Conclusion
In this study, we investigated the diagnostic performance of rest/stress MPI SPECT radiomics for the classifica-
tion of patients with coronary artery disease and evaluating their risk. Accordingly, the performance of several 
automated models, developed with combinations of different feature selection and machine learning algorithms, 
was evaluated and compared. Overall, the feature sets from the stress images achieved the highest performance. 
Patients’ diabetes status and radiomic feature representative of non-uniformity were highly selected by models 
for CAD risk classification. This study has shown that radiomics analysis of MPI SPECT is helpful in discrimi-
nating CAD patients, which can alleviate the labor-intensive interpretation process and expedite the diagnostic 
process in clinical setting.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to ethical issues 
but are available from the corresponding author on reasonable request.
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