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Abstract
This study aimed to assist doctors in detecting early-stage lung cancer. To achieve this, a hierarchical system that can detect 
nodules in the lungs using computed tomography (CT) images was developed. In the initial phase, a preexisting model 
(YOLOv5s) was used to detect lung nodules. A 0.3 confidence threshold was established for identifying nodules in this 
phase to enhance the model's sensitivity. The primary objective of the hierarchical model was to locate and categorize all 
lung nodules while minimizing the false-negative rate. Following the analysis of the results from the first phase, a novel 3D 
convolutional neural network (CNN) classifier was developed to examine and categorize the potential nodules detected by 
the YOLOv5s model. The objective was to create a detection framework characterized by an extremely low false positive 
rate and high accuracy. The Lung Nodule Analysis 2016 (LUNA 16) dataset was used to evaluate the effectiveness of this 
framework. This dataset comprises 888 CT scans that include the positions of 1186 nodules and 400,000 non-nodular regions 
in the lungs. The YOLOv5s technique yielded numerous incorrect detections owing to its low confidence level. Neverthe-
less, the addition of a 3D classification system significantly enhanced the precision of nodule identification. By integrating 
the outcomes of the YOLOv5s approach using a 30% confidence limit and the 3D CNN classification model, the overall 
system achieved 98.4% nodule detection accuracy and an area under the curve of 98.9%. Despite producing some false nega-
tives and false positives, the suggested method for identifying lung nodules from CT scans is promising as a valuable aid in 
decision-making for nodule detection.
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1 Introduction

Lung cancer significantly impacts global mortality rates. 
The Lung Cancer Research Foundation predicts that 
approximately 236,740 new lung cancer cases will occur in 

the United States in 2022, leading to 130,180 lung cancer-
related deaths [1]. The early detection of lung cancer heav-
ily relies on detecting pulmonary nodules. These nodules 
are abnormal growths within the lung, and while nodules 
smaller than 5 mm are frequently noncancerous, they can 
indicate the early stages of cancer [2]. Therefore, identify-
ing these nodules is essential for the early diagnosis of lung 
cancer.

Lung cancer screening can be conducted using various 
methods, such as bronchoscopy, a procedure that enables 
physicians to explore the inside of the airways and obtain 
cell samples. Biopsy samples are analyzed in a laboratory to 
detect abnormal cells. Another method is computed tomog-
raphy (CT) scan-guided biopsy, wherein, for nodules on the 
outer portion of the lung, CT images are used to guide a 
thin needle through the skin and into the lungs. This proce-
dure aims to obtain tissue samples from a nodule and exam-
ine them for abnormalities. Positron emission tomography 
(PET) is also used to detect cancerous cells in organs [3].
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The United States Preventive Services Task Force sug-
gests that individuals with a heightened likelihood of devel-
oping lung cancer should undergo annual low-dose CT 
scans. Low-dose chest computed tomography (LDCT) can 
be used to identify lung cancer in its early stages, potentially 
enhancing survival rates. Consequently, the widespread use 
of LDCT has prompted a renewed emphasis on lung cancer 
screening [4].

The automated identification of lung nodules frequently 
relies on artificial intelligence techniques such as deep con-
volutional neural networks (DCNNs) [5]. DCNNs offer 
great potential in nodule detection for lung cancer, provid-
ing faster, more cost-effective, and more accurate results. 
This method streamlines the analysis of CT scan images, 
reducing detection time and improving diagnostic preci-
sion. Recently, three-dimensional (3D) convolutional neu-
ral networks (CNNs) have emerged as popular methods 
for detecting nodules in CT scans. These networks utilize 
a segmentation framework centered on UNet networks to 
locate and outline nodules in the lung [6–8]. Subsequently, 
a classifier is applied to increase the accuracy of discerning 
false-positive and false-negative cases [9–12]. A more rapid 
and accurate method, Mask-R-CNN, has been developed, 
which includes a two-stage object detector that combines a 
region proposal network (RPN) with a region-based CNN 
(R-CNN) and a semantic segmentation model (MASK) 
[13–15]. The first stage of this method involves using the 
selective search technique to create a bounding box around 
the target object, followed by implementing a CNN layer to 
classify the detected objects.

Nguyen et al. [16] employed an adaptive anchor box fast 
R-CNN model to detect lung nodules in CT images. The fast 
R-CNN model was trained on nodules of various dimensions 
in the training dataset and utilized adaptive anchor boxes of 
different sizes. In contrast to the fixed anchor box typically 
used in R-CNNs, this method adjusts the anchor box size 
to enhance the detection accuracy for nodules of diverse 
dimensions. To minimize false positives in the fast R-CNN 
output, the authors suggested a post-processing residual 
CNN architecture (ResNet) [17] for the detected nodules.

In another study, a hierarchical method consisting of an 
R-CNN was proposed for nodule detection, and a 3D ResNet 
was employed to reduce false-positive outputs [18]. Because 
of the slow processing of R-CNN models, these approaches 
are inappropriate for real-time applications [19]. Further-
more, Agnes et al. [20] employed a two-stage model con-
sisting of a UNet-based network (Atrous Unet +) for node 
detection and a pyramid-dilated convolutional long short-
term memory (LSTM) network to reduce false positives.

The YOLO [21] method, also known as "you only look 
once," is a significant object recognition algorithm. In a sin-
gle forward pass, it can identify objects and classify them 
based on their labels in real time. YOLO has been used in 

medical domains, such as detecting and classifying breast 
masses in mammography images, which was one of its earli-
est applications [22, 23]. It has also been employed in skin 
cancer detection and melanoma identification [24]. In this 
context, George et al. [25] introduced an object detection 
approach for identifying lung nodules in CT scans by inte-
grating the DetectNet and GoogleNet architectures. Detect-
Net is based on the YOLO architecture, which explores an 
entire image to detect suspicious lesions and classify them 
into nodule or non-nodule cases. In another approach pre-
sented by Huang et al. [26], lung-nodule detection was per-
formed using a 3D OSAF-YOLOv3 model. This model is an 
integration of 3D YOLOv3 and a one-shot aggregation mod-
ule (OSA), receptive field block (RFB), and feature fusion 
scheme (FFS). Despite the promising performance of the 
YOLO-based nodule detection model, it may not always be 
accurate, and a significant number of nodules may remain 
undetected, or non-nodule structures may be mistakenly 
identified as nodules. This limitation can be addressed by 
introducing a compartment to the model output to decrease 
false-positive outputs.

YOLO offers several advantages over methods like Faster 
R-CNN and UNet in terms of speed and efficiency [27–29]. 
YOLO achieves faster detection by performing object recog-
nition in a single pass, eliminating the need for a time-con-
suming region proposal step. This allows YOLO to process 
images more quickly than the multi-stage approach of Faster 
R-CNN and the pixel-level segmentation of UNet. However, 
YOLO's speed comes with a trade-off between model light-
weightness and accuracy. While YOLO may sacrifice some 
precision compared to more complex models, its real-time 
capabilities make it well-suited for applications where speed 
is crucial. To improve the accuracy of YOLO, integrating a 
3D classifier, such as a 3D CNN, brings significant advan-
tages. The 3D classifier modifies YOLO by enhancing the 
classification of detected objects, reducing false positives, 
and improving the overall precision of lung nodule detec-
tion. This combination of YOLO and a 3D classifier offers a 
promising approach for achieving both speed and accuracy 
in the automated identification of lung nodules in CT scans.

We aimed to utilize lightweight models to achieve highly 
accurate nodule detection in LDCT images with a low false-
positive rate. Hence, a hierarchical approach for detect-
ing and classifying lung nodules was developed. Initially, 
an object detection mechanism was employed to identify 
potentially concerning nodules. Subsequently, these nod-
ules were analyzed using a 3D convolutional classifier to 
determine their status. The study used a modified pre-trained 
YOLOv5s model, known for its simplicity and efficiency, 
adapted for nodule identification in CT scans to detect all 
suspicious nodules. The aim of this step was to detect sus-
picious nodules. To minimize the false-positive rates in the 
nodules detected by the YOLOv5s model, we developed 
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a streamlined 3D CNN classifier (without using residual 
blocks) and incorporated it into the framework to classify 
suspicious nodules accurately.

2  Material and methods

2.1  Overview

The proposed model, referred to as hierarchical nodule 
detection (HND), involves two steps. In the first step, the 
entire CT image is analyzed using the YOLOv5s algorithm, 
which is commonly used for object detection. The YOLOv5s 
algorithm determines the location and probability (confi-
dence score) of the nodules. Given the locations of all the 
suspicious nodules detected by the YOLOv5s network (using 
a low-confidence score), a 3D bounding box (containing the 
nodule and background tissue) can be defined around each 
nodule to be fed to the next module. In the next phase, a 
3D CNN classifier processes these 3D patches to determine 
whether the candidates are actual nodules. In summary, the 
first stage with the YOLOv5s algorithm detects all the nod-
ules as a course classification, and the second module per-
forms fine classification by focusing on a single nodule at a 
time (Fig. 1). The 3D CNN classifier aims to minimize the 
false-positive rates. The source code for YOLOv5 models is 
available at https:// github. com/ ultra lytics/ yolov5.

2.2  Dataset and preprocessing

2.2.1  Internal dataset

We employed 888 CT images and labeled nodules from the 
LUNA 16 dataset to assess the efficacy of the proposed deep 

learning-based framework. The dataset represents a subset of 
the LIDC-IDRI dataset [30] (Lung Image Database Consor-
tium and Image Database Resource Initiative), in which each 
subject includes a low-dose CT image of 512 × 512 pixels, 
where the number of slices can vary between 100 and 500. 
A team of four expert radiologists examined the CT images 
and classified the nodules and non-nodules. At least three of 
the four radiologists were required to have labeled positives 
to be considered a nodule (with a diameter of at least 3 mm). 
In total, 1186 nodules were contained in this dataset. Fur-
thermore, the dataset encompasses a total of 400,000 areas 
labeled as non-nodular. These non-nodules refer to specific 
regions within the CT scans that, upon expert evaluation, 
were not demarcated as nodules by experienced radiolo-
gists. These particular regions encapsulate typical anatomi-
cal features, benign formations, or zones devoid of clinical 
pertinence in the context of nodule detection. The data are 
available at https:// luna16. grand- chall enge. org/ Data.

After thoroughly reviewing all the annotations for the 
nodules, we decided to exclude a total of 61 annotations. 
This exclusion was based on their incorrectness, impre-
ciseness, or low quality compared to other images. As a 
result, we selected 1125 nodules belonging to 597 different 
patients. All the CT images were converted to Hounsfield 
Units (HU) and resampled into an isotropic voxel size of 1 
mm. The CT images were normalized to adjust their inten-
sity range to between 0 and 1 using a global normalization 
factor (maximum intensity in the entire dataset).

71% of the data was randomly chosen for the training/
validation process (20% was designated for validation). The 
remaining 29% of the data was kept aside as unseen data to 
assess the model's ultimate performance, thereby prevent-
ing any bias or data leakage. Due to the random selection 
of training, testing, and validation data, the distribution 

Fig. 1  Proposed framework (HND) for detecting cancerous nodules 
in CT images. The entire 3D CT image is fed into the YOLOv5s 
model to determine the location of the entire suspicious nodules (A). 

Given the location of the suspicious nodules, 3D patches of the image 
are fed into the proposed 3D classifier to classify them as nodules or 
non-nodules (B)

https://github.com/ultralytics/yolov5
https://luna16.grand-challenge.org/Data
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characteristics of nodules, such as their size and shape, are 
likewise random within the respective sets.

2.2.2  External dataset

Additional evaluations were conducted on a different 
independent dataset to evaluate the generalizability of 
our model. The dataset was collected at Khatam’s PET/
CT Center. The subjects comprised 47 patients (37 male, 
10 female; mean age 65.04 years, range 41 to 85) with 60 
lung nodules. All patients underwent  [18F]-FDG PET/CT 
scanning on a Biograph mCT equipped with 128 CT slice 
capability (Siemens Healthcare). We acquired a low-dose 
CT scan using the Siemens CARE Dose package, with 
automatic exposure control (AEC), according to the lowest 

possible patient dose, maintained at 120 kV for all exams. 
An effective tube current of 80 mA, pitch of 0.8, and recon-
structed slice thickness of 2 mm were used. Even though 
lung nodules were confirmed with PET data, we only evalu-
ated the low-dose CT images.

2.3  Network training

2.3.1  YOLOv5s network

The YOLOv5s network was retrained to identify nodules 
within an entire input CT image. YOLO v5s is character-
ized by a relatively smaller model size and fewer parameters 
compared to other YOLO v5 variants. The smaller model 
size of YOLOv5s allows for faster inference. The reduced 
number of parameters also contributes to its efficiency and 
makes it more suitable for deployment on resource-con-
strained devices or scenarios where real-time performance is 
crucial. YOLOv5s training was performed in a 2D mode to 
explore all the slices. Regarding the small size of the nodules 
compared with the 2D slices of the CT images, the CT slices 
were divided into 64 × 64 sub-images (Fig. 2). Sub-images 
containing nodule tissues were used to train the YOLOv5s 
model.

The COCO (Common Objects in Context) dataset, 
designed for activities such as object identification, par-
titioning, and description [31], was employed to pre-train 
the YOLO model, which was then fine-tuned for nodule 
identification. YOLOv5 leverages a CNN framework [32] 
composed of an entry phase, backbone, neck, and head (as 
shown in Fig. 3). Initial preprocessing occurs in the entry 
phase, whereas the backbone, composed of cross-stage par-
tial systems (CSPs) [33] and spatial pyramid pooling (SPP), 
extracts characteristics from the input information. The 

Fig. 2  Transaxial slice of a CT image, divided into 64 × 64 sub-
images for the training of the YOLO network (The sub-images con-
taining lung tissue were employed to train the YOLO model)

Fig. 3  Architecture of the 
YOLO v5 network. (CSP dark-
net: Cross Stage Partial darknet, 
PANet: Pixel Aggregation 
Network, FPN network: Feature 
Pyramid Network)
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neck comprises a feature pyramid network (FPN) and pixel 
aggregation network (PAN) that transmit extensive semantic 
data from the upper to the lower feature map. The PAN [34] 
transfers feature maps from lower- to higher-level localiza-
tion. When these two structures are merged, they provide the 
benefits of multi-scale feature representation and contextual 
information integration. Finally, the resulting layers in the 
head identify objects of varying dimensions based on feature 
maps. The YOLO algorithm was retrained to recognize all 
the nodules in the CT scans, irrespective of whether they 
were nodules or non-nodules.

To retrain the YOLOv5s model, we employed 804 nod-
ules from 397 individuals across 300 iterations using sto-
chastic gradient descent (SGD), an initial learning rate of 
0.01, and a batch size of 16. The YOLOv5s model gener-
ated a bounding rectangle encircling the identified object, 
confidence score, and center of the nodule. The confidence 
score was computed as C = Probability(object) × Intersec-
tion over Union (IoU), where IoU denotes the intersection 
over the union between the predicted rectangle and actual 
value, signifying the likelihood of object recognition. The 
confidence threshold of the YOLOv5s model was reduced 
from 0.5 to 0.3 to ensure the detection of all nodules in the 
input CT scan.

2.3.2  Proposed 3D CNN network

To minimize the number of false positives, we introduced a 
new deep-learning structure consisting of four units. Each 
unit incorporated a 3D CNN, 3D max pooling, and batch 
normalization. Every unit featured a convolutional layer, 
with the filter count increasing from 64 in the initial layer 
to 256 in the final layer. As the filter quantity increased, 
more low-level characteristics could be extracted. Addi-
tionally, 3D max pooling and batch normalization layers 
were implemented following each convolutional layer. 
Using max pooling layers facilitated image analysis at 
four distinct complexity levels. A pair of dropout layers 
with a rate of 0.3 was included prior to the output to avoid 

overfitting. The ReLU function served as the activation 
function for the internal layers, and a sigmoid function 
was employed in conjunction with a dense layer for binary 
classification (Fig. 4).

A 64 × 64 × 64 voxel patch was established around each 
nodule for 3D CNN training to account for the small dimen-
sions of the lung nodules. The 3D CNN classified these 
patches as nodules or non-nodules. The 3D CNN model was 
trained with a learning rate of 0.0001 and a decay factor of 
0.96 using the Adam optimizer and binary cross-entropy 
as the loss function. The training process consisted of 100 
epochs with a batch size of 64, and 804 nodules were used 
for training and validation following the same approach as 
for YOLOv5s. The outputs of the YOLOv5s model were 
used to evaluate the network.

In this study, we developed the 3D CNN model using 
the Python programming language version 3.7, specifically 
leveraging the Keras and Tensorflow libraries. Additionally, 
the YOLO model has been developed using the PyTorch 
framework. Our experiments were conducted on a system 
equipped with an NVIDIA Tesla K80 GPU with a maximum 
capacity of 149W and memory of 11441MiB. The GPU was 
running NVIDIA-SMI version 495.44 with CUDA version 
11.2.

3  Evaluation strategy

To evaluate the performance of the model, we conducted 
experiments with different detection threshold values. Our 
findings indicate that setting the threshold at 0.3 yielded 
the most favorable results in terms of identifying nodules 
within the YOLO model. To ensure the detection of all 
suspicious nodules, we examined a confidence level of 0.3. 
After the YOLOv5s model identified suspicious nodules in 
full-sized CT images, consisting of 64 patches with dimen-
sions of 64 × 64, we extracted image 3D patches (with size 
of 64 × 64 × 64) around the suspicious nodules. These 3D 
patches were then utilized as input for the 3D classifier. This 

Fig. 4  Architecture of the 3D classifier for nodule classification
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process was performed on 200 CT images (200 patients) 
containing 321 nodules as the test (unseen) dataset for the 
model evaluation. The results of the YOLOv5s model with 
the default threshold (0.5) and the adjusted threshold of 0.3 
will be reported in the results section.

Ultimately, we assessed the final model using the external 
dataset under identical conditions and evaluation metrics as 
those employed for the LUNA 16 dataset.

To evaluate the nodule classification performance of the 
model, we used the accuracy, precision, recall, and F1 scores 
as follows:

In addition, receiver operating characteristics (ROC) 
were plotted using the true-positive rate (TPR) versus the 
false-positive rate (FPR) for varying thresholds, and the area 
under the curve (AUC) was determined.

4  Results

The YOLOv5s model was evaluated using 200 CT images 
containing 321 nodules. The YOLOv5s model identified 
187 of 321 real nodules as suspicious using a confidence 
score of 0.5 (107 were false positives). Employing a con-
fidence score of 0.3, the model detected 459 potential 
objects among 321 actual nodules, with 138 false posi-
tives, leading to an FPR of 28%. This comparatively high 
rate may be attributed to the lower confidence score used 
by the YOLOv5s model, primarily intended to identify 
larger objects in contrast to minuscule nodules. All nod-
ules (321 real nodules) were detected in the CT images 
of 200 patients using a confidence level of 0.3. Table 1 
presents the results of the assessment. Figure 5 depicts a 
representative true positive and false positive identified 

(1)
Accuracy Score = (TP + TN) ∕ (TP + FN + TN + FP)

(2)Precision Score = TP ∕ (FP + TP)

(3)Recall (sensitivity) Score = TP ∕ (FN + TP)

(4)

F1 score =2 × Precision Score × Recall Score ∕

(Precision Score + Recall Score)

(5)

(True Positive = TP, False Positive = FP,

TrueNegative = TN, False Negative = FN)

(6)TPR = TP ∕ (TP + FN)

(7)FPR = FP ∕ (FP + TN)

using the YOLOv5s model. In Fig. 6, cases initially unde-
tected at a confidence level of 0.5 but later detected at 
a lower confidence level of 0.3 are shown. Furthermore, 
Fig. 7 shows the false negative cases classified by the HND 
model. To address the high FPR, we inputted the output of 
the YOLOv5s model into the 3D CNN classifier, improv-
ing the nodule detection precision from 69 to 100%. This 
improvement was owing to the ability of the 3D CNN clas-
sifier to differentiate between nodules and non-nodules. 
Nevertheless, we also encountered 7 instances where false 
negatives occurred. The ROC plot for the model is pre-
sented in Fig. 8. In addition, Fig. 9 and Table 2 present 
the outcomes of the 3D CNN model on YOLOv5s outputs 
with a 0.3 confidence level (HND model).

To evaluate the model's generalizability, we conducted 
tests on 47 patients from the external dataset, encompass-
ing a total of 60 nodules. The detection part of the model 
detected 98 suspicious nodules, out of which 58 were true 
positives, while it missed 2 nodules. The classification 
model correctly identified 35 false positives but incor-
rectly classified 5 nodules as false, which means we ulti-
mately reached to 53 true positives and 35 true negatives. 
Figure 9 provides further clarification about the model’s 
performance on the external datasets’ samples. Overall, 
when applied to the external dataset, the model achieved 
an accuracy rate of 88.0% and a sensitivity of 88.3%.

Specifically, for YOLOv5s, the breakdown of the aver-
age detection processing time per image is as follows: 
0.5ms for preprocessing, 7.0ms for inference, and 1.2ms 
for non-maximum suppression (NMS). This results in a 
cumulative average of 8.7ms per image. Furthermore, the 
decision-making duration for each 3D patch, driven by the 
3D classifier, is approximately 0.32ms.

5  Discussion

This study aimed to detect entire nodules with a low false-
negative rate using lightweight models. False negatives, 
where nodules are present but undetected, can occur due to 
factors such as small nodule size, subtle appearances, and 
overlapping structures. False positives, on the other hand, 
arise when non-nodule structures are mistakenly identified 

Table 1  Outcome of the YOLO model before being processed by the 
3D classifier

YOLO 
confi-
dence 
Level

Number 
of real 
nodules

True 
Positive

False 
Positive

Precision 
(%)

Detected 
nodule per 
real nodule 
(%)

0.5 321 187 107 58 58
0.3 321 321 138 69 100
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as nodules. These can result from imaging artifacts, ana-
tomical structures resembling nodules, and model limi-
tations. Therefore, the YOLOv5s model was retrained to 
achieve a very high sensitivity for nodule detection (using 
a low confidence level) with high FPRs. Understanding 
that missing a nodule and foregoing subsequent screen-
ings is riskier than mischaracterizing healthy tissue as a 
nodule, we moderated our detection model's specificity. 
This was designed to optimize the detection of suspicious 
lesions, albeit with a concurrent rise in false positives. 

The incorporation of the 3D CNN model was aimed at 
reducing the occurrence of false positives by utilizing the 
outcomes of the YOLOv5s model. The presence of the 3D 
CNN resulted in a significant improvement in object detec-
tion accuracy, demonstrating its potential as a promising 
tool for lung nodule classification. In the initial stage of 
nodule detection throughout the entire image, the model 
successfully identified nodules but also labeled numerous 
non-nodules as nodules. However, during the subsequent 
stage of classifying the outputs from the first stage, the 

Fig. 5  Representative false-
positive (left) and true-positive 
(right) nodules detected by the 
YOLO v5s model with a confi-
dence level of 0.3

Fig. 6  Representative cases 
that were not detected with a 
confidence score of 0.5 but were 
detected with a confidence score 
of 0.3 by the YOLO v5s model. 
(The right detected suspicious 
nodule in the right image is a 
false positive)

Fig. 7  Representative images of the false-negative cases using the HND (YOLO 0.3 + 3D classifier) model
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model classified 314 objects as nodules and 145 as non-
nodules. This indicates that in the second stage, the model 
missed 7 nodules, initially identifying them as nodules but 
later classified them as non-nodules by the classifier. In 
essence, there is a trade-off between the model missing 7 
nodules or incorrectly classifying 138 non-nodules as nod-
ules. These false negative cases shared common character-
istics, specifically their location along the lung walls and 
their small size. The HND model (YOLO 0.3 + 3D clas-
sifier) could accurately detect nodules in the lung with an 
accuracy and precision of 98.4% and 100%, respectively.

To prevent missing any nodules, we deliberately low-
ered the sensitivity of the model. This allowed us to detect 
a broader range of potential nodules, including subtle or 
smaller ones that could have been overlooked. Consequently, 
the increased sensitivity also led to a higher false positive 
rate, as the model became more prone to detecting false 
signals or noise as nodules. To address this trade-off, we 
employed the 3D classifier as a post-processor to refine the 

nodule detection and eliminate incorrect responses. Striking 
a balance between sensitivity and false positive rate is essen-
tial, considering the specific requirements of the application 
and the potential consequences of false positive detections. 
When a confidence level of 0.5 was used for the YOLOv5s 
model, 37% of the nodules were missed in the first stage. 
Thus, the confidence level was reduced to 0.3 to enhance the 
sensitivity of the model in detecting all suspicious nodules 
(although the model resulted in high FPRs). By reducing 
the confidence level of the YOLOv5s model to 0.3, all the 
nodules were detected (100%).

One of the advantages of adjusting model parameters, 
such as the confidence level, is that it allows for fine-tuning 
and optimizing the model's behavior without significantly 
altering its architecture. This flexibility can save computa-
tional resources and training time, as adding layers or exter-
nal parameters may require retraining the entire model from 
scratch. By simply modifying the confidence threshold, we 
can achieve substantial improvements in detection perfor-
mance with minimal overhead.

When using an external dataset to assess the generaliz-
ability of the model, our accuracy decreased from 98.4% to 
88.0%, and our sensitivity dropped from 97.8% to 88.3%. 
Nevertheless, it is important to note that the low-dose CT of 
this dataset was utilized solely for PET attenuation correc-
tion and localization, making them unsuitable for clinical 
diagnosis. Despite these challenges, our model still demon-
strated a promising performance on this type of data, which 

Fig. 8  ROC plot for the HND model

Fig. 9  Confusion matrix of the HND model evaluated with internal dataset (left) and external dataset (right)

Table 2  Results of the 3D classifier on the outputs of YOLO with a 
confidence level of 0.3

Accuracy (%) Recall (%) Precision (%) AUC (%)

98.4 97.8 100 98.9
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is inherently more challenging to detect compared to diag-
nostic CT images. Two nodules were missed in the detection 
process. Both undetected nodules were tiny and adhered to 
the lung’s wall. This indicates that our challenge in misclas-
sifying these types of nodules as non-nodules by the model 
may worsen when dealing with low-dose images.

We conducted a comparative analysis between our study 
and other studies that were trained and tested using the 
LUNA 16 dataset. To decrease false positives, Nguyen et al. 
[16] used a fast R-CNN and a 2D network. As a result, an 
accuracy of 95.7% was achieved with a sensitivity of 93.8% 
in a tenfold cross-validation. Distinctly, our methodology 
employs a 3D network, enabling an in-depth analysis of 
the data surrounding lung nodes. This captures a broader 
context, positioning the proposed technique as a marked 
improvement over the constraints of 2D methodologies. 
Our 3D architecture effectively mitigates variations across 
slices, translating to fewer false positives and an enhanced 
ability to discern nuanced patterns. This is achieved through 
the 3D model's ability to interpret inter-slice connections, a 
capability lacking in 2D models that treat each slice in isola-
tion. Furthermore, this approach harmonizes with the study's 
core focus on analyzing nodules and their adjacent area 
within a 3D framework, a task that benefits from the inher-
ent ease of 3D analysis. Additionally, utilizing an external 
dataset decreased their sensitivity to 89.3%. This sensitivity 
reduction closely mirrors the decrease seen in our model's 
sensitivity upon employing the external dataset. However, 
the nature of our dataset, involving low-dose correction CT 
scans and the utilization of a more challenging 3D mode as 
opposed to a 2D mode, potentially enhances the reliability of 
our results. Moreover, in a study conducted by Agnes et al. 
[20], a UNet-based model combined with a pyramid-dilated 
convolutional LSTM resulted in a sensitivity of 93%. Their 
proposed CAD system comprises several modules, with the 
initial module utilizing Atrous UNet + for semantic segmen-
tation to identify candidate nodules from CT axial slices. 
The subsequent module incorporates the Pyramid Dilated 
Convolutional LSTM (PD-CLSTM) classifier, trained on 
the LUNA16 dataset, to discern genuine nodules from false 
ones. They proposed a comprehensive but complex model, 

which may not always be efficient. In addition to employing 
a data augmentation technique and reserving 20% of the 
dataset for testing, the study obtained results that are likely 
similar to our own findings. In another study [18], Fan et al. 
used an R-CNN model and 3D ResNet (consisting of 50 deep 
layers) to detect nodules and achieved a sensitivity of 93.6%, 
whereas the HND model in this study exhibited a sensitiv-
ity (recall) of 97.8%. Consequently, a complex classifier is 
not required for nodule classification when the nodules are 
cropped. The 3D CNN classifier yielded superior results 
with fewer layers (17 vs. 50), which could explain the bet-
ter convergence and lower likelihood of overfitting. George 
et al. [25] developed an end-to-end process by analyzing all 
input images for lesion detection and classification. They 
achieved a precision of 89%, which was better than that of 
the YOLOv5s model in this study but inferior to the overall 
precision of the HND model. This improvement in accu-
racy suggests that the 3D CNN classifier performed well 
in minimizing the occurrence of incorrect positive results, 
also known as false positives. Huang et al. [26] applied a 
single-stage 3D-YOLOv3 model and achieved a sensitivity 
of 96.2% on a fivefold validation strategy using data aug-
mentation, which was inferior to that observed in this study. 
On the other hand, our approach was to maintain the study 
as natural as possible without augmenting the data. Table 3 
presents a detailed comparison among the studies.

The study's limitations include the reliance on a specific 
dataset for evaluation, which raises concerns about the gen-
eralizability of the developed hierarchical system to different 
datasets and clinical settings. Validating the system using 
larger and more diverse datasets, conducting external valida-
tion, and performing prospective clinical studies are recom-
mended to overcome these limitations. Furthermore, in our 
study, we solely relied on YOLOv5s as our chosen architec-
ture. However, we also recognized the value of modifying 
the YOLOv5s architecture, taking inspiration from studies 
like Huang's [26] for a single-stage detection/classification, 
which incorporated attention layers into the model. Finally, 
optimizing the computational requirements and resource 
utilization would enhance the practical implementation of 
the system.

Table 3  Performance comparison with studies on LUNA 16

Study Methodology Data augmen-
tation

Cross validation Sensitivity (%) Accuracy (%)

Nguyen et al. [16] Fast R-CNN and 2D network Yes Tenfold 93.8 95.7
Agnes et al. [20] UNet + Pyramid Dilated Conv. LSTM Yes Fivefold 93.0 96
Fan et al. [18] R-CNN and 3D ResNet No No 93.6 –
George et al. [25] YOLOv5 Yes No – 93
Huang et al. [26] 3D-YOLOv3 Yes Fivefold 96.2 –
Our study HND model No No 97.8 98.4
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This study demonstrated that hierarchical networks 
would provide an efficient pipeline for nodule detection in 
the lungs. Additionally, the 3D CNN classifier can be used 
in conjunction with other algorithms, such as segmentation 
frameworks, to ensure the validity of the results and improve 
the overall precision of the model.

6  Conclusion

This study developed a hierarchical method consisting of 
two phases for detecting and categorizing lung nodules in 
CT scans. In the first phase, the YOLOv5s model is applied 
to the entire CT image, achieving a high sensitivity for iden-
tifying nearly all suspicious nodules. In the second phase, 
a 3D classifier identifies false-positive cases (i.e., non-nod-
ules), significantly improving the overall precision of the 
model. The model achieved an accuracy of 98.4% and an 
AUC of 98.9%.
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