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Filters are commonly used to enhance specific structures and patterns in images, such as vessels or peritumoral regions, to enable 
clinical insights beyond the visible image using radiomics. However, their lack of standardization restricts reproducibility and 
clinical translation of radiomics decision support tools. In this special report, teams of researchers who developed radiomics software 
participated in a three-phase study (September 2020 to December 2022) to establish a standardized set of filters. The first two phases 
focused on finding reference filtered images and reference feature values for commonly used convolutional filters: mean, Laplacian of 
Gaussian, Laws and Gabor kernels, separable and nonseparable wavelets (including decomposed forms), and Riesz transformations. 
In the first phase, 15 teams used digital phantoms to establish 33 reference filtered images of 36 filter configurations. In phase 2, 11 
teams used a chest CT image to derive reference values for 323 of 396 features computed from filtered images using 22 filter and image 
processing configurations. Reference filtered images and feature values for Riesz transformations were not established. Reproducibility 
of standardized convolutional filters was validated on a public data set of multimodal imaging (CT, fluorodeoxyglucose PET, and 
T1-weighted MRI) in 51 patients with soft-tissue sarcoma. At validation, reproducibility of 486 features computed from filtered 
images using nine configurations × three imaging modalities was assessed using the lower bounds of 95% CIs of intraclass correlation 
coefficients. Out of 486 features, 458 were found to be reproducible across nine teams with lower bounds of 95% CIs of intraclass 
correlation coefficients greater than 0.75. In conclusion, eight filter types were standardized with reference filtered images and reference 
feature values for verifying and calibrating radiomics software packages. A web-based tool is available for compliance checking.
© RSNA, 2024
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Radiomics involves the high-throughput extraction of quan-
titative features from medical images to support clinical de-

cision making (1,2). Relatively few radiomics decision support 
tools have entered the clinic because their clinical translation is 
restricted by both the lack of standardization of the extraction 
process and by lack of quality clinical evidence for their efficacy 
(3). Focusing on software-related aspects of the extraction pro-
cess, the Image Biomarker Standardization Initiative (IBSI) pre-
viously established modality-independent standards for digital 
image processing and computation of handcrafted, quantitative 
radiomic features (4). This improved reproducibility and inter-
changeability of IBSI-compliant radiomics software packages, 
provided that the extraction process is configured the same be-
tween packages (5,6).

Filters (Table) are frequently used in radiomics analyses to en-
hance and quantify potentially clinically relevant characteristics 
and textures in medical images, such as the peritumoral region, 
blood vessels, contrast agent uptake, degree of calcification, or 
fibrosis, among others (7) (Appendix S1). For example, Beuque 
et  al (8) applied a Laplacian of Gaussian filter to contrast-en-
hanced mammography to classify breast lesions into benign and 
malignant cases. The Laplacian of Gaussian filter enhanced the 
regions with contrast agent uptake, amplifying the signal, and 
therefore was found to be important for classifying lesion ma-
lignancy. Many filters, including the Laplacian of Gaussian fil-
ter used by Beuque et al, rely on convolution. Convolution is a 
mathematical operation where a filter (here an array of numbers) 
is systematically slid across the entire image (Fig 1). This process 
yields a filtered image that enhances and spatially locates poten-
tially relevant image characteristics. However, the computational 
implementation of these filters has not been standardized, and 
quantitative features extracted from regions of interest in the fil-
tered images were found to be poorly reproducible between ra-
diomics software packages (9) (Fig 2). Consequently, radiomics 
decision support tools that incorporate features computed from 
regions of interest inside filtered images may be difficult to re-
produce, validate, and translate clinically.

Because convolutional filters are both important and com-
monly used, the IBSI aimed to improve reproducibility of 

Abbreviation
IBSI = Image Biomarker Standardization Initiative

Summary
Standardizing convolutional filters that enhance specific structures and 
patterns in medical imaging enables reproducible radiomics analyses, 
improving consistency and reliability for enhanced clinical insights.

Essentials
 ■ Fifteen international teams who developed radiomics software 
defined and standardized eight convolutional filter types for 
radiomic analyses: mean, Laplacian of Gaussian, Laws and Gabor 
kernels, separable and nonseparable wavelets (undecomposed, 
decomposed forms).

 ■ Thirty-three reference filtered images and 323 reference feature 
values computed from filtered images were established to 
standardize radiomics analyses across various imaging modalities.

 ■ A website-based tool is available for checking compliance of 
radiomics software.

radiomics decision support tools involving these filters and to fa-
cilitate their clinical translation through a modality-independent  
software standardization process by establishing definitions for 
convolutional filters, including commonly used ones such as 
wavelets and Laplacian of Gaussian filters; by integrating convo-
lutional filters into the previously established general radiomics 
image processing scheme (4); and by providing data sets, associ-
ated reference filtered images, reference feature values, and tools 
for verification and calibration of radiomics software packages.

Materials and Methods

Study Design
This standardization effort was divided into three phases (Fig 3)  
and was conducted between September 2020 and December  
2022. During the first two phases the implementation and use 
of convolutional filters were standardized. Phase 1 concerned 
the creation of reference filtered images (ie, the expected re-
sult of applying a convolutional filter with specific parameters 
to an image). In phase 2, convolutional filters were integrated 
into a radiomics workflow for the purpose of finding reference 
values for radiomic features computed from filtered images. In 
phase 3, we assessed whether standardization of convolutional  
filters resulted in reproducible feature values. A website (https://
ibsi.radiomics.hevs.ch/; Appendix S2) was created to coordinate 
the study.

Convolutional Filters
Convolutional filters transform an image to a filtered image by 
convolution. These filters consist of numerical weights that are 
predefined or parameterized in the spatial domain or in the fre-
quency (Fourier) domain. Several convolutional filters were as-
sessed (ie, mean filter, Laplacian of Gaussian filter, Laws kernels, 
Gabor kernels, separable and nonseparable wavelets, and Riesz 
transformations of convolutional filters; Fig 1). Details are sup-
plied in Appendix S1 and in Depeursinge et al (10).

Participating Teams
Teams of radiomics researchers were invited to participate in this 
study. In addition to all teams that had previously participated 
in the IBSI (4), invitations were extended to any other team that 
indicated their desire to participate by using the main IBSI web-
site (https://theibsi.github.io/) and by forms of personal commu-
nication. Participation was voluntary and open for the duration 
of the study. Teams were eligible to participate if they developed 
their own radiomics software and their software was compliant 
with the previous IBSI reference standard. Teams were not re-
quired to participate in all phases of the study.

Phase 1: Establishing Reference Filtered Images
In phase 1, five digital three-dimensional phantoms were used 
(Appendix S3), as follows: an orientation phantom to verify con-
sistency of image orientation within the software of each team; 
an impulse phantom with a single, central, active voxel; a sphere 
phantom consisting of concentric spherical shells; a phantom 
with a checkerboard pattern; and a phantom with line patterns. 
Thirty-six convolutional filter configurations were defined to 
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establish reference filtered images (Appendix S4). Teams com-
puted filtered images for each filter configuration and uploaded 
these to the study website.

The level of consensus for each filtered image was assessed us-
ing the same metrics as were used previously (4), as follows: by the 
number of teams that matched the tentative reference filtered im-
age (Appendix S5) (ie, had filtered images with voxel-wise differ-
ences with the tentative reference filtered image that were less than 
1% of the intensity range of the tentative reference filtered image 
for all voxels) and the previous number divided by the number of 

teams that contributed a filtered image. The levels of consensus 
were as follows: none, if the tentative reference filtered image was 
not produced by more than 50% of contributing teams; weak, 
match between fewer than three teams; moderate, match between 
three and five teams; strong, match between six and nine teams; 
and very strong, match between at least 10 teams.

Phase 2: Defining Feature Reference Values
Convolutional filtering was integrated into the general ra-
diomics image processing scheme (Fig 1). Image processing and 

Figure 1: Overview of convolutional filters. An image is filtered using convolution to create a filtered image (top). Each image consists of values. At convolu-
tion, a filter with three weights (1.0, −2.0, 1.0) is slid across the image, and adjacent image values are multiplied with the corresponding filter values and summed 
to create a response value for each position in the image. Convolutional filtering is positioned after resampling in the overall radiomics image processing scheme 
(center). This workflow starts with an image obtained from a repository or archiving system in a digital format. The image is optionally converted (eg, from PET 
activity to standardized uptake values) and undergoes postprocessing (eg, MRI bias-field correction). Segmentation masks are either loaded in a digital format 
or automatically created. Both image and segmentation masks are optionally resampled. Filtered images are created by filtering the image. Filtered images and 
segmentation masks are then used to compute radiomic features. This study attempts to standardize several types of convolution filters (bottom). The original CT 
image is shown for reference.
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convolutional filter configurations were then defined for each 
filter. Both two- and three-dimensional filter configurations 
were created, yielding 22 configurations in total (Appendix S4). 
Teams computed a filtered image for each configuration from a 
publicly available chest CT image of a patient with lung cancer 
(11). Eighteen intensity-based features were computed from the 
gross tumor volume region of interest in each filtered image (Ap-
pendix S6). Thus, a total of 396 features could be computed (18 
features × 22 configurations). After computing feature values, 

teams uploaded their results to the study website. The level of 
consensus for feature values was assessed using the same met-
rics as in phase 1 by using contributed values for each feature as 
input and comparing matches within a tolerance margin (Ap-
pendix S6).

Phase 3: Validation
After completing phases 1 and 2, teams were asked to compute in-
tensity-based features from the gross tumor volume segmentation 

Figure 2: Three filters are used to quantify different characteristics of the peritumoral region in a chest CT, with an out-of-plane tumor. For each filter, mean and 
maximum intensity are computed within the segmentation masks in three filtered images. The standardized filtered image was created by applying a standardized 
filter to the original image. The other two filtered images resulted from filter implementations that were not standardized. The Laplacian of Gaussian filter is used to 
quantify the presence of edges and highlight fine details. The scale of the filter is 2.0 mm, and it is truncated at 8.0 mm. The nonstandardized filters use 2.0 voxels and 
truncate at one filter scale (2.0 mm). Separable wavelets are designed to quantify image contents for different frequency bands, though in many radiomics analyses 
they are used to quantify edges. A pair of low-pass and high-pass wavelet kernels is used to filter the image, highlighting edges in the lateral direction. The nonstan-
dardized filters either use an incorrect orientation (ie, low-pass and high-pass kernels were swapped) or are faulty because the first kernel is used for all directions 
(ie, a pair of low-pass-low-pass wavelet kernels). Gabor filters are used to quantify directional structures (eg, fibrosis and bronchi). The standardized filter used scale 
and wavelength parameters of 2.0 mm and was oriented under 30°. The nonstandardized filters use an incorrect orientation or express parameters in 2.0 voxels.
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in filtered images of a multimodality imaging cohort (co-registered  
CT, fluorine 18 fluorodeoxyglucose PET, and T1-weighted MRI). 
This cohort consisted of 51 patients with soft-tissue sarcoma 
obtained from the Cancer Imaging Archive (12–14). PET and 
MRI were preprocessed to ensure that conversion of PET activ-
ity concentration to standardized uptake value and MRI bias field 
correction and normalization could not affect validation results 
(Appendix S4). Nine image processing and convolutional filter 
configurations were specified for each modality. Thus, a total of 
486 features (18 features × nine configurations × three image mo-
dalities) could be computed. Teams were blinded to the results 
submitted by other teams. After submitting results, obvious con-
figuration errors were reported back to the submitting team.

Statistical Analysis
Reproducibility of each of the 486 features computed in the vali-
dation phase was assessed using two-way random effects single-
rater intraclass correlation coefficient for absolute agreement 
between teams (15). Based on Koo and Li (16), reproducibility 
of each feature was assigned to one of the following categories, 
based on the lower bound of the 95% CI of the intraclass cor-
relation coefficient (17), as follows: poor, lower bound less than 
0.50; moderate, between 0.50 and 0.75; good, between 0.75 
and 0.90; and excellent, greater than 0.90. Intraclass correlation 
coefficient and their CI were computed in R version 4.2.1 (R 
Foundation for Statistical Computing).

Code
Analysis and results for phase 1 were scripted in Matlab (version 
2020b and later; MathWorks). Analysis and results for phases 2 
and 3, the figures and tables pertaining to the results, and the 
analysis presented in Appendix S5 were scripted and created in 
R (version 4.2.1 and later; R Foundation for Statistical Com-
puting). All code is publicly available at https://github.com/theibsi/
ibsi_2_data_analysis (commit fde70ca).

Results

Characteristics of Participating Teams
Fifteen teams from seven countries participated in the first 
phase, 11 teams participated in the second phase, and nine 
teams participated in the validation phase. Twelve teams had 
developed publicly available software: Cancer Imaging Phenom-
ics Toolkit (known as CaPTk), Computational Environment for 
Radiological Research (known as CERR), FAST, Local Image 
Feature Extraction (known as LIFEx), Multimodality Imaging 
for Radiomics Software (known as MIRAS), Medical Image 
Radiomics Processor (known as MIRP), moddicom, Standard-
ized Imaging Biomarker Explorer (known as S-IBEX), SPAARC 
Pipeline for Automated Analysis and Radiomics Computing 
(known as SPAARC), Visualized and Standardized Environment 
for Radiomics Analysis (known as ViSERA), and the McGill and 
Université de Sherbrooke teams (Appendix S7).

Figure 3: Study overview. Several figure elements adapted, under a CC BY 4.0 license, from reference 10.
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First Phase Results
Of the 36 filtered images that were assessed in the first phase, 
moderate or better consensus was found for 17 (47%) at the 
initial point (Fig 4). At the final point, moderate or better con-
sensus was achieved for 33 (92%) configurations, of which 24 
(67%) were very strong. Thus, 33 reference filtered images were 
established. Full consensus was reached for configurations cor-
responding to mean filters, Laplacian of Gaussian filters, Laws 
kernels, Gabor kernels, and separable and nonseparable wave-
lets (including decomposed forms). Weak or no consensus was 
achieved for three (8%) configurations, corresponding to con-
figurations involving Riesz transformations (Fig S1).

Second Phase Results
At the initial time of the second phase, moderate or better con-
sensus was achieved for 198 (50.0%) of 396 features, aggregated 
for 22 different filter configurations (Fig 4). At the final point, 
323 (81.6%) features had at least moderate consensus. Again, 

full consensus was reached for features computed from filtered 
images of mean filters, Laplacian of Gaussian filters, Laws ker-
nels, Gabor kernels, and separable and nonseparable wavelets 
(including decomposed forms), except for the quantile coeffi-
cient of dispersion feature for three-dimensional nonseparable 
wavelets. No consensus was established for features based on 
Riesz transformations (Fig S2) because too few teams submitted 
values for these features.

Validation Results
In summary, eight types of convolutional filters were standard-
ized in the first two phases. The reproducibility of features from 
filtered images created by these filters was assessed in the third 
phase. Here, 458 (94.2%) of 486 features were found to have 
good to excellent reproducibility (intraclass correlation coeffi-
cient 95% CI lower bound, >0.75; Fig 4). Overall, 19 (3.9%; 19 
of 486) features were poorly reproducible (intraclass correlation 
coefficient 95% CI lower bound, <0.50), and were found for 

Figure 4: Results overview. In phase 1, participating teams computed 36 filtered images of convolutional filters according to predefined con-
figurations. These filtered images were compared, and consensus was measured. Teams updated their implementations iteratively, which led to an 
improvement of consensus over time (arbitrary [arb.] unit; 27 months). Consensus strength was based on matching the voxel-wise difference between 
filtered images and the tentative reference filtered image within a tolerance. The number of participating teams at each point is shown. In phase 2, 
participating teams computed 396 features from filtered images of convolutional filters according to predefined filter and image processing configura-
tions. As in phase 1, teams updated their implementations iteratively. Unlike phase 1, improvement in consensus was mostly because of more teams 
enrolling over time (arbitrary unit; 15 months). Consensus strength was based on the number of teams matching the tentative reference feature value 
within a tolerance and was assigned according to the same categories as in phase 1. In phase 3, reproducibility of features computed from filtered im-
ages was validated. Teams computed 486 features from a public data set of 51 patients with soft-tissue sarcoma that were scanned using CT, fluorine 
18 fluorodeoxyglucose (FDG) PET, and T1-weighted (T1w) MRI. Reproducibility was assessed using the lower bound of the 95% CI of the intraclass 
correlation coefficient: poor, lower bound less than 0.50; moderate, between 0.50 and 0.75; good, between 0.75 and 0.90; excellent, greater than 
0.90; and unknown, computed by fewer than two teams.
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Laplacian of Gaussian and separable and nonseparable wavelet 
filters. Most of these features were either coefficient of variation 
or quartile coefficient of dispersion features that represented 
eight and nine of 19 features, respectively. A list of poorly repro-
ducible features is provided in Table S1. Intraclass correlation 
coefficient values and their 95% CIs are listed in Tables S2–S10. 
No dependence on imaging modality could be observed.

Discussion
Convolutional filters enhance specific structures and patterns in 
medical images and are commonly used in radiomics analyses. 
However, because of a lack of proper consensus-based refer-
ence implementations, features computed from filtered images 
provided by these filters were difficult to reproduce (9). In our 
study, 15 teams from seven countries collaborated to remedy 
this situation by providing reference filtered images, reference 
feature values, and reference documentation. We were able to 
standardize and validate eight different filter types: mean, Lapla-
cian of Gaussian, Laws and Gabor kernels, and separable and 
nonseparable wavelet filters in both undecomposed and de-
composed forms. Thirty-three reference filtered images and 323 
reference feature values, computed from filtered images, were 
established to standardize radiomics analyses across various im-
aging modalities.

Our results complement the previous results of the IBSI (4). 
The IBSI focused on standardizing both the image processing 
scheme for radiomics and a large set of radiomic features. It 
aimed to improve reproducibility of radiomics studies by miti-
gating the effect of using different radiomics software packages 

and by providing a common framework for describing methodo-
logic details. This study adds to the previous work by standardiz-
ing the use of convolutional filters frequently used in radiomics.

Despite the overall success of the standardization process, 
there were two instances in which we did not achieve the de-
sired level of success. First, we were unable to standardize Riesz 
transformations that, despite their attractive characteristics 
from a signal processing perspective, were not easy to imple-
ment. Thus, too few teams contributed data for Riesz trans-
formations, and we could not establish their reference filtered 
images and reference values. Because Riesz transformations are 
rarely used in radiomics studies, the impact should be minimal.  
Second, several features could not always be computed in a re-
producible manner, notably the coefficient of variation and quar-
tile coefficient features in conjunction with high- and band-pass 
convolutional filters. Such filters are characterized by a filtered 
image with a mean intensity of zero. In the presence of high- 
and band-pass convolutional filters, the mathematical division 
operation present in both features led to otherwise negligible 
numeric differences between teams becoming relevant, resulting 
in poor reproducibility. Therefore, these features should not be 
used in combination with high- and band-pass filters.

Our work has several implications. First, we found that re-
producible implementation of most types of convolutional fil-
ters across different radiomics software is not straightforward, as 
evidenced by the initial lack of consensus on reference filtered 
images in phase 1 (Appendix S8). Therefore, we assume that ex-
isting clinical or research radiomics software, which incorporates 
convolutional filters in advanced image analysis workstations, 

Glossary of Terms

Term Definition
Standardization The process of establishing uniform guidelines and protocols to ensure consistency and reproducibility.
Convolutional filter A filter consisting of fixed or parameterized numerical values, that is slid (convolved) over an image to 

enhance potentially relevant characteristics, such as normal tissue-tumor boundaries, blood vessels, 
texture, and fibrosis.

Filtered image The image produced by applying a (convolutional) filter to an image.
Low-pass filter A filter that suppresses noise and other sharp patterns in an image and enhances smooth aspects.
High-pass filter A filter that suppresses smooth aspects of an image and enhances details and sharp image patterns.
Band-pass filter A filter that suppresses both smooth aspects of an image as well as sharp image patterns and enhances 

intermediate details.
Reference filtered image An established filtered image representing the expected output of a specific convolutional filter applied 

to a specific image, that serves as a benchmark for verification and calibration.
(Radiomics) feature A quantitative measure that is computed from a region of interest in a (filtered) image. The computation 

of common features was previously standardized by the image biomarker standardization initiative (4).
Reference feature value An established expected value when computing a feature from a specific region of interest in a specific 

(filtered) image, that serves as a benchmark for verification and calibration.
Radiomics software A software package that (at least) processes medical imaging and computes radiomics features.
Radiomics decision support tool A computer application that provides clinical decision support based on radiomics features.
Mean filter A filter that computes the average value within a neighborhood of voxels.
Laplacian of Gaussian filter A filter used to detect edges and highlight fine details in an image.
Laws kernels Sets of predefined filters used for highlighting various patterns in images, such as ripples.
Gabor kernels Filters used for detection of directional patterns.
Wavelets Sets of filters used to decompose images into different spatial frequency ranges.
Riesz transformation A mathematical operation on filters that enhances edges and directional patterns in an image.
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may yield feature values that are not externally reproducible. 
This might impede external validation and subsequent clinical 
translation until the software is made to be compliant.

The second implication is that software labeled as IBSI- 
compliant is expected to reproduce the reference filtered im-
ages and reference feature values found in our study, insofar as 
convolutional filters are available in the software, in addition to 
the existing reference feature values (4). Developers of radiomics 
software supporting convolutional filters should aim to make 
their software compliant to improve reproducibility of radiomics 
analyses and allow for translation of enhanced clinical insights 
offered by convolutional filters. Developers should then clearly 
label their software as IBSI-compliant, to make it easier for users 
to identify and use their software for research and/or clinical pur-
poses (with regulatory approval). Compliance may be checked 
using website-based tools (https://ibsi.radiomics.hevs.ch/), or by 
manually comparing the produced filtered images and feature 
values against the provided reference data. Compliant software is 
expected to produce filtered images on which every voxel devi-
ates from the reference filtered image by at most 1% of the range 
of intensity values of the reference filtered image (Appendix S5). 
Similarly, feature values must be within the specified tolerance 
margin around their reference feature values.

The third implication is that even though we contextualized 
our efforts within radiologic imaging, our work is relevant for 
quantitative image analysis in general, including digital pathol-
ogy. Like our previous study (4), this study is anticipated to 
improve reproducibility of radiomics analyses beyond the mo-
dalities (digital phantoms, chest CT) and settings (non–small 
cell lung cancer) examined during the initial two phases of this 
study. To provide supporting preliminary evidence, we con-
ducted validation using a publicly available data set composed of 
patients with soft-tissue sarcoma and multiple imaging modali-
ties. The outcomes of the validation phase reinforce the potential 
applicability of our work in diverse settings.

Our study had limitations. First, its scope was restricted. 
Compliance with IBSI reference values helps to improve repro-
ducibility of radiomic features (5,6). However, the results of a 
radiomics analysis also depend on image acquisition, reconstruc-
tion, segmentation, and data analysis steps (18,19), which we 
did not address here or in our previous work. Differences in, 
for example, image acquisition protocols are known to affect the 
appearance of an image, and therefore also reproducibility of ra-
diomic features (20). Such effects can be reduced by harmoni-
zation and cross-calibration of scanners and protocols (21) and 
post hoc techniques such as perturbation (22,23), batch normal-
ization (24), and other methods (25). Second, participation in 
the IBSI does not guarantee that a particular software package 
is compliant with the IBSI reference standard. Changes intro-
duced in software (5) or design choices may limit compliance 
(26). Third, we standardized intensity-based statistical features 
computed from filtered images but no other types of features. 
Morphologic features are mostly redundant because these are 
based on segmentation masks that are explicitly not altered by 
convolutional filtering. Most texture features, in our estimation, 
would be too abstract to allow for interpretation when computed 
from filtered images. Their use may add hundreds or thousands 

of features to a radiomics analysis, which complicates the process 
of creating generalizable and interpretable radiomics models in 
the typical setting where at most a few hundred images are avail-
able for analysis. Finally, the IBSI has focused on radiomics using 
handcrafted features, and with this work offers a comprehensive 
reference standard for their computation. However, we recognize 
that there are more features and other filters than the ones we 
have standardized so far. These are not implemented often and 
will be hard to standardize for that reason.

In conclusion, we standardized eight types of convolutional 
filters for radiomics to ensure that the enhanced clinical insights 
that can be gained through their use can be validated and re-
produced. Going forward, developers should ensure compliance 
of their software with the proposed reference standards, and us-
ers are encouraged to use compliant software. A web-based tool 
is available for compliance checking. In the future, the Image 
Biomarker Standardization Initiative will focus on deep learn-
ing applications of radiomics, with the goal to provide reference 
standards for image preprocessing.
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