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Background: Radiomics features hold significant value as quantitative imaging biomarkers for diagnosis, 
prognosis, and treatment response assessment. To generate radiomics features and ultimately develop 
signatures, various factors can be manipulated, including image discretization parameters (e.g., bin number 
or size), convolutional filters, segmentation perturbation, or multi-modality fusion levels. Typically, only 
one set of parameters is employed, resulting in a single value or “flavour” for each radiomics feature. In 
contrast, we propose “tensor radiomics” (TR) where tensors of features calculated using multiple parameter 
combinations (i.e., flavours) are utilized to optimize the creation of radiomics signatures.
Methods: We provide illustrative instances of TR implementation in positron emission tomography-
computed tomography (PET-CT), magnetic resonance imaging (MRI), and CT by leveraging machine 
learning (ML) and deep learning (DL) methodologies, as well as reproducibility analyses: (I) to predict 
overall survival (OS) in lung cancer (CT) and head and neck cancer (PET-CT), TR was employed by 
varying bin sizes. This approach involved use of a hybrid deep neural network called ‘TR-Net’ and two 
ML-based techniques for combining different flavours. (II) TR was constructed by incorporating different 
segmentation perturbations and various bin sizes to classify the response of late-stage lung cancer to first-line 
immunotherapy using CT images. (III) In MRI of glioblastoma (GBM), TR was implemented to generate 
multi-flavour radiomics features, enabling enhanced analysis and interpretation. (IV) TR was employed via 
multiple PET-CT fusions in head and neck cancer. Flavours based on different fusions were created using 
Laplacian pyramids and wavelet transforms.
Results: Our findings demonstrated that TR outperformed conventional radiomics features in lung 
cancer CT and head and neck cancer PET-CT images, significantly enhancing OS prediction accuracy. 
TR also improved classification of lung cancer response to therapy and exhibited notable advantages in 
reproducibility compared to single-flavour features in MR imaging of GBM. Moreover, in head and neck 
cancer, TR through multiple PET-CT fusions exhibited improved performance in predicting OS.
Conclusions: We conclude that the proposed TR paradigm has significant potential to improve 
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Introduction

The term ‘radiomics’ was first introduced in 2010 by 
Gillies et al. (1) as “the extraction of quantitative features 
from radiographic images”. Radiomics features capture 
information about tissues and lesions (2-5). A collection 
or combination of radiomics features considered to be 
a ‘radiomics signature’ can computationally model a 
biological phenomenon (6). Singular radiomics features and 
radiomic signatures can act as imaging biomarkers and have 
been shown to reflect biological characteristics of lesions 
and can improve a range of different clinical tasks (7-9). 
Radiomics includes the use of single- or hybrid-imaging 
modalities, with the potential to identify novel imaging 
biomarkers for improved detection, classification, staging, 
prognosis, prediction and treatment planning in different 
cancers (9).

A radiomics feature can be generated using different 
parameters (e.g., pre-processing, discretized bin number or 
size; segmentation threshold to define region-of-interest). 
There have been significant efforts to establish the best 
values of parameters suitable for different tasks. However, 
determining suitable predictive features can be a difficult 
task. Certain features or versions of features (with specific 
parameters) may be non-robust to noise or can change 
depending on the scanner used to acquire the imaging data. 
This can result in a lack of reproducibility across different 
institutions and scanners (10-14) and radiomics features 
may be non-robust to noise or inter-center protocol and 
scanner variabilities (15,16). The vast array of feature-
selection methods used in radiomics studies (17-19) attests 
to the need for careful pruning of features beforehand and 
the difficulty of such a task. Individual radiomics features 
may correlate with one another, hence providing no added 
predictive value for a radiomic signature, or they may 
challenge interpretability, such as many “deep features” 
extracted from layers of a neural network (3,20). This can 
result in a lack of reproducibility across radiomics trials. 

Although efforts have been made to standardize radiomics 
protocols (21) and reduce the effect of different scanners, 
these remain relevant issues (10,20).

This work aims to tackle the above-mentioned 
limitations of radiomics analyses using a different paradigm. 
We propose TR in which multiple flavours (i.e., versions of 
the same radiomics features) are generated and considered. 
Generally, a radiomics feature consists of a single value 
for an entire 2D or 3D volume. Instead of providing a 
single value for each feature, we compute multiple values 
of the feature by varying some of the parameters in the 
calculation. Features with different bin sizes, perturbation 
of segmentations, pre-processing filters [e.g., Laplacian of 
Gaussian (LOG) and wavelets], and fusion techniques can 
be considered as different flavours. We hypothesize that TR 
has the potential to overcome some of the shortcomings 
of models that use radiomics features enabling improved 
clinical task performances.

Methods

Patient data

In this paper, we explore application of the proposed 
TR paradigm to a range of data and applications. These 
included computed tomography (CT) images of lung 
cancer, positron emission tomography-CT (PET-CT) 
images of head and neck cancer, and magnetic resonance 
imaging (MRI) of glioblastoma (GBM), as listed in Table 1, 
and further elaborated in subsequent sections.

Study methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). Our original 
intuition to explore the TR paradigm was that features 
generated using multiple flavours may be more robust and 
reproducible (and ultimately valuable) compared to single-

performance in different medical imaging tasks. By incorporating multiple flavours of radiomics features, 
TR overcomes limitations associated with individual features and shows promise in enhancing prognostic 
capabilities in clinical settings.
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flavour features for outcome prediction. In TR, we build 
feature tensors using many flavours (Figure 1) as a method 
towards the optimized construction of radiomics signatures. 
For different clinical tasks, subsequent to the generation of 
the radiomics tensor, one may utilize feature selection or 
extraction methods, as well as machine learning (ML) or 
deep learning (DL) methods, for optimal construction of 
signatures.

 In what follows, we further elaborate possible 
approaches to TR and provide example applications in 
PET-CT, MRI, and CT imaging. We generate multi-
flavour TR signatures by varying bin sizes in PET-CT 
and CT images (section Discretization flavours). Different 
segmentation perturbations are our next approach to build 
different flavours of radiomics signature in CT images 

(section Segmentation flavours). Multi-flavour radiomics 
features generated by varying hyperparameters of pre-
processing filters are also considered in MRI images 
[section Filter (pre-processing) flavours]. Flavours built 
from different fusions methods on PET-CT images are 
also considered towards building TR signature in this effort 
(section Fusion flavours).

Discretization flavours
Data and task
We evaluated whether TR may enhance the prediction of 
outcome using PET-CT scans in patients with HNC. The 
224 baseline HNC PET-CT scans were obtained from 
The Cancer Imaging Archive (TCIA) along with primary 
tumour segmentations (22). Tumours were segmented 
by expert radiation oncologists onto either the original 
PET-CT scan or a separate CT scan. In the latter case, 
segmentations were propagated to the PET-CT scan using 
intensity-based free-form deformable registration. In this 
work, we formulated the outcome prediction task as binary 
classification (2-year progression free survival). TR features 
were extracted from PET images using 10 different bin 
sizes [0.1–1.0 standard uptake value (SUV), increments 
of 0.1 SUV] using the PyRadiomics package v3.0.1 (23). 
Please see S.2 for a list of all available features. A total of  
105 features were used including first order, 3D shape, gray-
level co-occurrence matrix (GLCM), gray level run length 
matrix (GLRLM), gray level size zone matrix (GLSZM), 
neighboring gray tone difference matrix (NGTDM) and 
grey level dependence matrix (GLDM) features. From 
there, standard deviation, compactness 1, compactness 2, 
spherical disproportion, and voxel volume were excluded 
due to high correlation with other features.

The primary realization of the proposed TR utilizes 
explainable, handcrafted radiomics features at varying 
discretization levels. Discretization is the grouping of the 
original range of pixel intensities into specific intervals or 
bins, necessary for the computational feasibility of certain 
features (24); e.g., fixing the bin widths (BW) or fixing the 

Table 1 Description of datasets and corresponding tasks in this work

Dataset Modality Task Number of cases

Lung CT Treatment response prediction 118 lung lesions (primary and lung metastases from 96 patients)

Head and neck PET-CT 2-year progression-free survival 224 patients (primary tumors)

Brain MRI Repeatability analysis 17 patients (test-retest T1- and T2-weighted images of glioblastoma)

PET, positron emission tomography; CT, computed tomography; MRI, magnetic resonance imaging.

Tensor radiomics feature set
Single radiomics feature

Features

Flavour type A

Flavour type B

Figure 1 A representation of a radiomics tensor. The black arrow 
indicates the dimension where the different extracted radiomics 
features are stacked, while the flavour types (A, B, ...) encompass 
variations by which feature values are generated: examples include 
variations in discretization bin sizes, segmentations, pre-processing 
filters and fusion methods. Only two variants can be represented 
here in 3D, but even higher dimension tensors can be generated. 
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Figure 2 Radiomics features calculated on PET-CT images from head and neck data. 10 ‘bin flavours’ calculated by using different 
discretization strategies to extract 75 features. PET, positron emission tomography; CT, computed tomography.

number of bins [bin counts (BC)]. Different ‘bin flavours’ 
calculated by different discretization strategies are shown 
in Figure 2. An optimal discretization would be one that 
consistently filters out noise while retaining the integrity 
of important lesion features. However, little guidance is 
given on achieving such an optimum in the literature, even 
though discretization can dramatically impact the calculated 
feature values. In our proposed TR paradigm, a variety 
of bins (flavours) can be generated, and the best ones are 
ultimately utilized (see Figure S1 in the supplementary 
material for further details).
ML-based flavour selection framework
First, we trained two ML models, support vector machines 
(SVM) with radial basis function (RBF) kernel and logistic 
regression, on concatenated features for all possible 
combinations of 10 flavours (1,013 different combinations 
with 2 or more flavours). The TR models were compared to 
the same ML models trained on single-flavour features.
DL-based flavour fusion framework
We developed a two-stage deep feed-forward neural 
network, named TR-Net (for TR Network), to perform 
end-to end-flavour fusion (see Figure 3 for further details). 
The input to this model were all features extracted using 
all flavours. TR-Net consists of legs and body: each leg 

is a stack of multiple dense layers separately fed with the 
features of each flavour in its input layer. All legs are then 
concatenated and connected to a few more dense layers to 
complete the architecture of the network. The size of the 
final dense layer, as well as the size of other dense layers in 
the architecture and the number of the layers in both the 
legs and the head part, were among the hyperparameters 
that we tuned them on the validation set.

A sigmoid function in the last layer performs the binary 
outcome classification. The network was trained using a mean 
squared error (MSE) loss function. In binary classification 
tasks, the conventional approach is to employ the cross-
entropy loss. In our study, we initially experimented with the 
cross-entropy loss during hyperparameter search. However, 
we encountered the issue of training loss failing to converge. 
To address this challenge, we empirically explored alternative 
options, including MSE loss. Notably, we observed loss 
convergence when using MSE loss, leading us to adopt it 
as the preferred loss function in our experiments. Random 
selection search using a nested 5-fold cross-validation (CV) 
was utilized for hyperparameter tuning. Our TR-Net is a 
modified version of a fusion network initially proposed in (25)  
for biometrics liveness detection. Intuitively, during 
training, TR-Net concurrently learns a transformation of 

https://cdn.amegroups.cn/static/public/QIMS-23-163-Supplementary.pdf
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features coming from its legs (different flavours in our case) 
into a common subspace (in the first stage) and performs 
classification on those features based on their fusion in that 
common subspace (in the second stage). To tackle class 
imbalance during training the network, SMOTE (26) was 
applied to the training set only, to up-sample the minority 
(positive) class.

Average balanced accuracy and F1 score metrics were 
computed using stratified 5-fold CV (for both ML & DL 
methods). Scaled exponential linear unit (SELU) activation 
function (27) was used in all the dense layers of the legs and 
the body along with dropout.
ML-based feature selection framework
Motivated by the improved performance of TR-Net, we 
studied the effect of applying feature selection (for any 
given flavour across different features) prior to performing 
flavour fusion on the same classification task. A range of 5 
to 25 features were selected from each of the 10 flavours 
using sequential forward feature selection method (28)  
based on the mean F1 score over a nested 5-fold CV 
setup. These selected features were then combined for 
all possible combinations of 10 flavours to form our 
TR features, and then ranked based on mean balanced 
accuracy and F1 score of nested 5-fold CV using two ML 
classifiers, namely an RBF kernel SVM and a Logistic 
Regression model.

To provide clarity, our process began by extracting 
radiomics features for all 10 flavours. We then aggregated 

these features for all possible combinations of flavours, 
ranging from combinations of 2 to all 10 flavours together (all 
possible subsets of a set with 10 elements). Next, we trained 
two classifiers on all these combinations and reported their 
performance on the 5 folds of the test set. We presented a 
few select combinations to demonstrate the concept of TR 
and highlight the benefits of utilizing features extracted from 
multiple parameter settings in the data.

In the second part, we utilized features extracted from 
all flavours to train a two-stage deep neural network and 
reported classification metrics on 5 folds of the test set. 
Finally, in the third part, we performed a feature selection 
step to identify the most predictive single features for 
each flavour, and then combined those selected features 
to form TR features. We then aggregated these features 
for all possible combinations of flavours and reported the 
performance of classifiers trained on these combinations on 
the 5 folds of the test set.

Segmentation flavours
Data and task: we analyzed the viability of TR features with 
a Lung Volume CT dataset of late-stage non-small cell lung 
cancer (NSCLC) patients. This dataset is a retrospective 
cohort of patients with Programmed Death Li gand-1 
(PDL1) scores ≥50% that received first-line single-agent 
pembrolizumab as the current Canadian clinical practice 
(29-31). Two oncology radiologists read the baseline and 
1st follow-up CT to assess treatment response [e.g., disease 
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Figure 3 The architecture for our TR-Net. Features of a given flavour are input into the ‘legs’ of the network, which work to extract and 
combine the most effective features. The various flavour legs are then concatenated and put through several final layers before producing a 
binary prediction. SELU, scaled exponential linear unit; TR-Net, tensor radiomics network.
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control, including: complete/partial response (C/PR) and 
stable disease (SD) vs. progressive disease (PD)] using 
RECIST v1.1 (32). This CT dataset consists of 118 lung 
lesions (primary and lung metastases) from 96 patients, with 
up to 5 axial adjacent slices per lesion selected to provide a 
more supplementary descriptive CT image dataset (n=558). 
The ML task for this dataset was to predict patient response 
to pembrolizumab (i.e., Disease Control) using 2D-only 
TR features extracted from baseline axial CT lesion 
segmentations. CT volume data were from an ongoing 
study approved by the University of British Columbia and 
BC Cancer Agency review ethics board (UBC/BCCA REB 
#H19-01597).

We also explored TR based on segmentation flavours. 
Inspired by Zwanenburg et  a l .  (33)  where image 
perturbations to assess feature robustness were used, we 
incorporated combinations of translation, area adaptation, 
and contour randomization of the images and masks to 
extract a number of perturbed images per axial slice of 
available segmentations. This TR segmentation flavour 
technique was employed to leverage an established test-
retest method in an effort to establish robust and stable 
features. For each of these perturbed images, radiomic 
features were extracted with PyRadiomics and used to build 
our radiomics tensor. Our TR feature set was used to train 
a ML model to execute this binary patient response task 
for measurement of disease control (PR + SD vs. PD). We 
leveraged Zwanenburg et al.’s methodology, primarily the 
“volume adaptation” (V) method, for our lung lesion ROIs 
to extract static bin size feature flavours from perturbed 
2D lesion segmentations. This V method describes a 
process wherein the ground truth mask is either dilated or 
eroded using a disc-structuring element. An arbitrary and 
equal number of dilations and erosions are performed to 
capture extra parenchymal tissue either (dilation) or tissue 
characteristics from the core of the lesion only (erosion).

To further supplement the protocol from section 
Discretization flavours (bin size flavours), each vanilla 
feature (i.e., non-perturbed images and a static bin width) 
in the 2D CT feature set was recalculated using increasing 
bin width sizes for extraction of TR features without image 
perturbation. We compared the validity of both schemes 
of TR features, bin size changes and image perturbations 
respectively, with a standard rudimentary ML model, the 
linear discriminant analysis (LDA), for design simplicity. 
These models were trained on TR features chosen by 
Sequential Forward Feature Selection (SFS). An LDA 
trained on 7 vanilla radiomics features selected by SFS 

was chosen as the primary analysis method for comparison  
(5-fold nested CV and patient agnostic training-test splitting 
to avoid biasing the results; SMOTE resampling for class 
imbalance). A statistical power analysis revealed that this 
late-stage cancer dataset sample size (N=96), achieves 
80% power for detecting a medium effect (ES =0.61) at a 
significance level α=0.05 for Welch’s t-test. Therefore, given 
our positive event rate (26:70 positive:negative patients), a 
5-fold CV was selected provided that a medium effect size is 
maintained for each fold given the approximate number of 
patients in the test set.

We compared a series of TR feature flavours against a 
baseline LDA model trained on unperturbed images. We 
refer to this baseline as having “vanilla” feature flavours. 
We created 3 other TR feature flavour sets from images to 
test against this vanilla model: (I) recalculated features using 
increasing bin widths; (II) segmentation volume adaptation 
via dilating and eroding the ROI mask; and lastly (III) a 
combination of image translation (“T”), segmentation 
volume adaptation (V), and segmentation contour 
randomization (“C”) to produce the “TVC” TR feature 
flavour set.

Filter (pre-processing) flavours
Data and task: we analyzed MR images of 17 GBM 
patients including T1- and T2-weighted images. Test-
retest scans were performed within the same imaging unit 
on two consecutive days (34,35). Full affine registration 
of test to retest images was performed with 12 degrees of 
freedom using mutual information cost function; three 
segmentations in T1 and one in T2-weighted images were 
performed (enhancing + necrotic, enhancing, necrotic, and 
edema cores) (35). N4 bias correction was performed on 
raw MR images. Our task in this experiment was to assess 
the repeatability of MR imaging radiomics features.

In this approach, tensors of radiomic features were 
generated after applying pre-processing filters as different 
flavours such as wavelets (WL, all possible combinations 
of applying either a high- or a low pass filter in each of the 
three dimensions, including HHH, HHL, HLH, HLL, 
LHH, LHL, LLH, and LLL), LOG (with different sigma 
values of 0.5 to 5 with steps 0.5), Exponential, Gradient, 
Logarithm, Square and Square Root scales. In addition 
to filter flavours, we also used discretization flavours 
(e.g., section Discretization flavours) of fixed bin width 
and fixed bin count (16, 32, 64, 128, and 256). Different 
features, namely first-order (FO) and textural features 
(GLCM, GLRLM, GLDM, GLSZM, NGTDM) were 
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then extracted. Principal component analysis (PCA) was 
performed on different flavours to generate new features. 
One component per feature was chosen (converting 
multiple preprocess features to one feature). We performed 
this task regarding the improvement of repeatability of 
radiomics features across different preprocessing steps. 
Intraclass correlation coefficients (ICC) were calculated to 
assess the repeatability of features (comparing performances 
of conventional single-flavour features vs. newly-generated 
features). ICC values were classified into low, medium, high, 
and excellent repeatable features for ICC <50%, 50%≤ 
ICC <75%, 75%≤ ICC <90%, and 90%≤ ICC ≤100%, 
respectively.

Fusion flavours
Data and task: to evaluate fusion flavours, we used the same 
data and task as in section Discretization flavours (head and 
neck cancer PET-CT binary outcome prediction).

Fusion radiomics (36), an emerging area of investigation, 
has up to now meant fusing images in different ways and 
selecting the optimal one. In the proposed TR, we alter 
the paradigm and include various multi-modality fusions 
within the radiomics tensor for a given task, followed by 
subsequent model construction. We employed 15 image-
level fusion techniques to combine PET-CT information 
(see Table S1). Detailed explanations of the fusion 
techniques are available in the Appendix 1. Subsequently, 
211 features were extracted from each region of interest in 
PET-only, CT-only, and 15 fused PET-CT images through 
the SERA radiomics package (37). A range of optimal 
algorithms was pre-selected amongst various families of 
learner algorithms.

We considered two approaches for the prediction task: (I) 
we separately applied radiomics features extracted from each 
of the PET-only, CT-only, and 15 fused PET-CT images to 
three classifiers, namely logistic regression, random forest, 
and multilayer perceptron (MLP) classifiers. We employed 
ensemble voting for each classifier: specifically, we used  
nine different estimators for each classifier (i.e., with 
different optimized parameters from nine different 
runs/initializations/grid-search). (II) After min-max 
normalization, we first removed flavours with correlations 
over 95% to avoid redundant data and then employed a 
PCA algorithm to combine the remaining flavours of each 
TR and convert those to a single attribute. Subsequently, 
the polynomial feature transform was utilized to combine 
the attributes and generate 142,879 fusion-TR features. 

The ANOVA approach (38) was then utilized to select 
1,000 relevant fusion-TR features among 142,879 attributes 
generated by the polynomial function. Finally, we applied 
these selected fusion-TR features to the three above-
mentioned classifiers to predict survival outcome. In 
this work, we performed nested 5-fold CV for all datasets, 
including PET-only, CT-only, 15 fused PET-CT images, and 
fusion-TR features. In each round, we divided the dataset into 
a training part (four-fold) and testing part (one-fold). In the 
training process, we further divided the training dataset into 
two sub-parts, with 80% of data points for training the model 
and the remaining 20% for model selection. Mean accuracy 
in training validation was used to select the best model. Mean 
accuracy in nested testing was reported to validate the best 
model (for more information, see Figure S2).

Results

Results of using discretization flavours

We first assessed the effectiveness of combining features 
from different combinations of the flavours (bin size 
in this part of our study) in terms of two classification 
score metrics: balanced accuracy, and f1 score (we also 
studied area under ROC curve, with similar trends; not 
shown). Figure 4 illustrates the enhanced metric values 
using 5 different flavour combinations taken from the 
top 20 combinations out of all possible ones (we applied 
the next k-fold cross validation). The rationale behind 
this comparison is to examine whether combining “all” 
features of multiple flavours improve the classification, 
without performing feature selection, and whether the 
combinations that improve the classification performance, 
show some meaningful combinations; e.g., evaluating if the 
combination of the smallest bin size with the largest bin size 
can improve the performance. To this end, we examined 
all possible combinations and reported a few of the better 
performers with respect to single bin size features.

Our results show that TR features made from multiple 
flavours with respect to regular radiomics features improved 
performances from (red) conventional radiomics to (blue) 
TR in ML pipelines. Further improvements were obtained 
when utilizing (yellow) our DL TR-Net pipeline in an 
end-to-end fashion. We also studied the effect of feature 
selection prior to ML methods applied to conventional vs. 
TR models, with similar trends (see Figure 5). We applied a 
corrected t-test on the results but did not detect significant 
outperformance relative to the baseline.

https://cdn.amegroups.cn/static/public/QIMS-23-163-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-163-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-163-Supplementary.pdf
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Figure 4 Balanced accuracy (left) and f1 score values (right) when using conventional radiomics (single-flavour) using ML pipeline (red),  
5 different combinations of TR flavours using ML pipelines (blue), and all 10 TR-flavours of features via DL TR-Net pipeline (yellow). All 
features were used (no features selection methods were applied prior). ML, machine learning; TR, tensor radiomics; DL, deep learning. 
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Results of using segmentation flavours

ROC and Precision-Recall analysis on vanilla feature 
flavour, different bin size, the combination of image 
translation (“T”), segmentation volume adaptation (“V”) 
and contour randomization (“C”) were conducted as seen in 
Figure 6.

As previously stated in section Segmentation flavours, a 
Group-k (k=5) fold CV was performed to assess the effect of 
our proposed segmentation TR flavours on the Lung-CT 
outcome prediction task. Reported metrics and uncertainties 
were based on the average scores of area under the ROC 
curve (ROC AUC), and mean average precision (mAP) and 
F-1 score using this CV technique. The results in terms of 
these classification metrics were compared to the single-
flavoured (vanilla) features. Furthermore, the performance 

of the LDA model on the test folds by applying feature 
selection prior to model training is illustrated in Table 2 as 
well as Figures 6,7.

Overall, the trend indicates a strong model performance 
with the addition of TR feature flavours. We observe boosts 
to established metrics such as ROC AUC and PR AUC 
over the vanilla feature model as evidenced by Table 2 (and  
Figure 7). TVC perturbation maintained the largest F-1 
score of 0.852±0.09 in comparison to the vanilla model’s 
0.793±0.08. The weakest model was the solo volume 
adaption (V) feature flavour set in nearly all metrics. 
However, looking at Figure 7, one can observe a non-small 
model improvement in the image perturbation feature sets 
(TVC and V) at low false positive rates. All in all, our results 
suggest the TR paradigm to enable improved performance 
relative to conventional radiomics.
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Figure 5 Balanced accuracy (left) and f1 score values when using feature selection (right), prior to applying conventional radiomics (single-
flavour) (gray) vs. TR (multi-flavours) (green). TR, tensor radiomics.
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Results of using filter (pre-processing) flavours

As seen in Figure 8, LOG results in the highest number 
of repeatable features. In LOG preprocessing with sigma 
0.5 and 1 there were features with low repeatability. 
However, in TR_BC (bin count), there were no poorly 
repeatable features, and only two features showed medium 
repeatability, with the rest showing high and excellent 
repeatability. In wavelet features, different settings resulted 
in different numbers of non-repeatable and repeatable 
features; LLL results in the highest number of repeatable 
features. TR of wavelets showed 3 low, 11 medium, 45 high 
and 34 excellent repeatable features. Overall, TR increased 
radiomics-feature repeatability in all features and only 
two features Kurtosis from first order and busyness from 
NGTDM had low repeatability (ICC <50%). In TR, features 
including Complexity and Coarseness from NGTDM, CP 
from GLCM and Skewness from first-order had medium 
repeatability (50%≤ ICC <75%). Twenty-four features 
showed high repeatability (75%≤ ICC <90%) and 61 from 93 
features showed excellent (ICC ≥90%) repeatability.

Results of using fusion flavours

For our fusion-based TR framework, we included  
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211 radiomics features. After feature fusion, we selected 
the relevant fusion-TR features, applying them to the 
mentioned ensemble classifiers. The highest training 
validation performance of 73.6%±2.5% was obtained for 
fusion-TR via MLP, and nested testing of 71.8%±4.8% 

confirmed this f inding as shown in Figure 9 .  For 
conventional non-TR scheme, the highest training 
validation performance of 69.7%±5.1% was obtained for 
Laplacian Pyramid (LP) + Sparse Representation (SR) 
linked with random forest, with nested testing performance 
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of 66.6%±3.9%. Paired t-test indicated significantly 
improved (P<0.05) performance for the proposed TR 
framework compared to best non-TR performance.

Discussion

Radiomics features can improve clinical task performances 
by capturing important pathophysiological information (7).  
In routine practice, radiomics features are included using 
a fixed set of parameters. In this study we generated TR 
features by varying multiple parameters such as bin sizes, 
exploring different segmentation perturbations, varying 
hyperparameters of pre-processing filters and testing 
different fusion techniques. We explored the tasks of 
survival prediction outcomes (sections Results of using 
discretization flavours, Results of using segmentation 
flavours and Results of using fusion flavours) as well as test-
retest repeatability (section Results of using filter (pre-
processing) flavours). Our proposed TR approach allows the 
learning algorithms to consider different aspects of imaging 
features, moving beyond conventional paradigms.

Applying bin size variations to create different flavours of 
TR features for the HNC study described in section Results 
of using discretization flavours showed its effectiveness 
in performance enhancement of the outcome prediction 
task. Compared to the radiomics features extracted in a 
regular manner, combining the different bin size radiomics 
features flavours presented more discriminative power 
for the classification problem. However, not all features 
from all flavours combined necessarily lead into a more 
discriminative set of information. Employing flavour 
combination selection and TR-Net for end-to-end flavour 
fusion back up this statement (Figure 4). By using SELU 
activation functions along with dropout regularization in 
every layer, TR-Net can learn a transformation of features 

from all flavours to a common latent space in a way that it 
keeps the contribution of informative features coming from 
different flavours while decreasing their weaknesses through 
suppressing the redundant features. Furthermore, motivated 
by the promising results obtained by TR-Net compared 
to non-DL results achieved by flavour combinations, we 
investigated the idea of performing feature selection per 
each flavour to make our TR feature set less redundant 
and more discriminative. Prior to applying ML and 
DL pipelines to their combinations, it is possible to use 
correlation between the same features from different 
flavours to remove the highly correlated ones. This work is 
basically trying to represent proof of the concept of TR and 
we believe that this is an important refinement that needs to 
be explored in future studies.

For the study of segmentation flavours in section Results 
of using segmentation flavours, a majority of LDA model 
performances saw an overall boost with the addition of 
TR feature flavours for segmentation perturbation as TR 
flavours. Notably, the more aggressive image perturbation 
technique (“TVC”) achieved the highest ROC AUC score 
and second highest PR AUC as seen in Table 2. The strong 
performance of the differing bin size TR feature set over 
the vanilla features also supports the findings of section 
Results of using discretization flavours vis-a-vis radiomic 
feature classification power improvement via changing bin 
size when calculating radiomic features. Continuing to 
look at Figure 7 the TVC and bin size methods also showed 
a marked improvement over the vanilla features at low 
false positive rates, indicating a higher sensitivity at these 
thresholds. In the context of this task, identifying patients 
who are less likely to respond to pembrolizumab with a 
high specificity while maintaining a sensible sensitivity is a 
crucial finding in patient survival. The models that are able 
to identify PD patients (i.e., non-responders) allow clinical 

Table 2 The performance of the LDA model on the test folds

Flavour Balanced accuracy F1 score ROC AUC mAP

Vanilla 0.67±0.08 0.79±0.08 0.73±0.12 0.88±0.09

TVC 0.77±0.06 0.85±0.07 0.83±0.09 0.92±0.08

Bins 1-to-100 0.73±0.08 0.82±0.09 0.78±0.06 0.92±0.04

V 0.68±0.08 0.79±0.09 0.65±0.14 0.84±0.10

VC 0.69±0.09 0.87±0.02 0.82±0.06 0.93±0.03

Data are presented as mean ± standard deviation. ROC, receiver operator characteristic; LDA, linear discriminant analysis; AUC, area 
under the curve; mAP, mean average precision; TVC, combination of image translation (T), segmentation volume adaptation (V) and 
contour randomization (C).
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decision makers to adjust from 1st-line immunotherapy 
with pembrolizumab (“pembro”) to combination therapy 
pembro and platinum-doublet chemotherapy in an effort 
to more aggressively combat late-stage tumour growth. 
The findings of the study in section Results of using 
segmentation flavours indicate the power of TR based 
features in identifying clinicopathological biomarkers that 
can elucidate medical utility for this homogenous patient 
population.

The “vanilla” baseline parameters for the first two 
experiments i.e., the discritization and segmentation 
flavours were chosen as follows. As per IBSI, image/
volume preprocessing (i.e., before feature extraction) 
was performed using suggested default guidelines and 
appropriately modified depending on the requisite modality 
differences. Dataset exploration and analysis determined 
that critical parameters, such as a CT bin width of 25 HU 
and an intensity rescaling to the standard window [ for lung 
WL =−400 HU, WW =1,500 HU], resulted in a sufficient 
number of bins that did not generate sparse matrices for 
gray-level based features (e.g., GLCM, GLSZM) and 
therefore more robust features (as evidenced by the IBSI 
parameter documentation). A similar analysis pipeline was 
performed on the HNC PET-CT dataset. Analysis of the 
PET-CT scans using the Freedman-Diaconis rule indicated 
that the optimal discretization bin width for PET was 0.3 
SUV and 2 HU for CT. Fixed bin width was chosen in 
lieu of a fixed bin count as it has been thought to improve 
feature reproducibility in PET scans (39). Other parameter 
considerations, such as the many possible filters that can 
be applied to an image with PyRadiomics v.3+ (e.g., LoG, 
Wavelet transforms) were also applied to the Lung CT 
dataset to add additional TR flavour dimensions during 
segmentation flavouring. We believe that this choice allows 
for a fairer baseline classification performance comparison 
between TR features and vanilla features.

In section Results of using filter (pre-processing) 
flavours, we considered TR based on different hyper-
parameters of pre-processing filters (LOG and wavelet) 
increased radiomics-feature repeatability. TR made by 
different hyper-parameters of LOG preprocessing filter did 
not show any poorly-repeatable features, and only 2 features 
had medium repeatability. On the other hand, TR based on 
different flavours of wavelet filter, had some non-repeatable 
and repeatable features. TR based on fusion flavours also 
showed significant improvement over the best non-TR 
performer (section Results of using fusion flavours). The 
fusion flavour idea can be further extended to additionally 

include deep features from different image-fusions via 
deep neural networks (e.g., autoencoders), adding those to 
existing TR features to study potentials to further enhance 
performance.

Beside the effective methods employed in different 
studies carried out throughout the previous sections of 
this work, in the frame of TR, there were many other 
studies that were tested but not all were fruitful. However 
many valuable lessons were learnt that are indeed worth 
mentioning here. As a case in point, for bin size flavours 
study (section Results of using discretization flavours), 
we tested many other implementations involving binning 
flavours, but not all were led to meaningful improvements. 
Among them are the combination of flavours via PCA 
to create new, blended features. Multiple ML pipelines 
consisting of an unsupervised feature selection/dimensionality 
reduction method (univariate feature selection, PCA with a 
linear kernel, PCA with a RBF kernel) and an ML classifier 
(logistic regression, random forest, SVM, k nearest 
neighbors) were developed which showed no consistent 
increase or decrease in terms of classification scores when 
compared to a baseline that used only one flavour.

This approach was repeated using LDA to combine 
flavours with similarly inconclusive results. These results 
compared to that of the reported ones in section Results 
of using discretization flavours may indicate that a more 
nuanced approach is necessary to effectively include new 
bin flavours. Potential ideas include switching out PCA 
for a more sophisticated method of flavour combination, 
such as an autoencoder. Adding more flavour types other 
than bin flavours could also help to make more robust 
TR features. In this case LDA, PCA or any other feature 
extraction/dimensionality reduction method could perform 
an effective feature/flavour combination and as a result, a 
better prediction performance. These findings could back 
up the idea that employing domain knowledge in picking 
the best flavour types per each study case is crucial. In other 
words, beside finding the best method to combine multiple 
flavours, finding the most informative and relevant flavour 
variations for the task at hand is an important factor that 
needs to be taken carefully.

In this paper, we employed both machine learning and 
deep learning. Deep learning shows that additional features 
can benefit by providing more information representation 
of a sample, but overfitting is avoided. On the other hand, 
machine learning is more nuanced. We aimed to avoid the 
curse of dimensionality by performing feature selection 
and/or dimensionality reduction prior to feeding features 
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into machine-learning models. A large pool of features was 
initially considered, but vetted to provide a more reasonable 
set of features for model training.

TR is important in the context of hand-crafted 
radiomics because previously published studies commonly 
choose some parameters a priori without necessarily 
reliable justification. Areas for future exploration include 
establishing the effectiveness of TR methods on other larger 
datasets, improved methods (e.g., use of methods for the 
analysis of longitudinal data, imagining different flavours 
as different time-points in feature-space), and exploring 
new flavours (e.g., deep features as mentioned earlier). 
The TR paradigm enables revisiting past efforts and re-
studying them in different light. For instance, subregional 
intratumour radiomics were defined based on individual- 
and population-level clustering: combining feature flavours 
generated from different tumour partitions can result in a 
new form of TR. In addition, shell features reflecting the 
tumour micro environment can be extracted from different 
sizes of peritumoural regions and their combinations can 
also be explored in the proposed context of TR.

Conclusions

For radiomics analyses, fixed parameter values are 
commonly used to generate  feature values  (e .g . , 
discretization (bin number or size), pre-processing 
filtering, segmentation, or multi-modality fusion). At best, 
results generated via different flavours are compared to 
one another. Our proposed paradigm is to move beyond 
this, to use radiomics tensors of features calculated 
with multiple combinations of flavours. We applied this 
paradigm to different modalities, tasks and algorithms 
(ML and DL). Our results, from different studies and 
modalities, revealed that TR has the potential to enable 
improved task performances.
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Appendix 1 Fusion techniques

Multi-scale transform (MST) theories are popularly deployed in various image fusion scenarios such as classical MST-based 
fusion methods including pyramid-based methods like Laplacian pyramid (LP) (40) , and ratio of low-pass pyramid (RP) (41), 
wavelet-based methods like discrete wavelet transform (DWT) (42) and dual-tree complex wavelet transform (DTCWT) (43), 
and multi-scale geometric analysis (MGA)-based methods like curvelet transform (CVT) (44) and nonsubsampled contourlet 
transform (NSCT) (45). Generally, MST-based fusion methods consist of three steps (46). First, decompose the source images 
into a multi-scale transform domain. Then, merge the transformed coefficients with a given fusion rule. Finally, reconstruct 
the fused image by performing the corresponding inverse transform over the merged coefficients. Sparse representation (SR) 
addresses the signals’ natural sparsity, which is in accord with the physiological characteristics of human visual system (47). In
SR-based image processing methods, the sparse coding technique is often performed on local image patches for the sake of 
algorithm stability and efficiency (48). The sliding window technique is adopted in their method to make the fusion process 
more robust to noise and misregistration. In (45), the sparse coefficient vector is used as the activity level measurement. 
NSCT + SR, DTCWT + SR, and CVT + SR are three fusion methods that mixture of MST-based and SR-based methods. 
In general, the low-pass MST bands are merged with an SR-based fusion approach while the high-pass MST bands are 
fused using the conventional “max absolute” rule with a local window-based consistency verification scheme (42,49). CBF 
fuses source images by weighted average using the weights computed from the detail images that are extracted from the 
source images using CBF. Here, the weights are computed by measuring the strength of details in a detail image obtained by 
subtracting CBF output from original image (50). Principal component analysis (PCA), Hue, Saturation, and Intensity (HSI), 
Wavelet and Weighted are other fusion methods that were used in this work (51,52).
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Figure S1 The framework for TR analysis with bin size flavours. 

Table S1 List of fusions techniques explored in section Results of using fusion flavours

Fusion techniques Sparse representation (SR) Bilateral Cross Filter (BCF) Hue, Saturation and Intensity 
Fusion

Weighted fusion

Laplacian pyramid (LP) Principal component 
analysis (PCA)

Ratio of low-pass pyramid (RP)

Wavelet-family 
fusion techniques

Discrete wavelet transform 
(DWT)

Curvelet transform (CVT) Dual-tree complex wavelet 
transform (DTCWT)

Nonsubsampled contourlet 
transform (NSCT)

NSCT + SR DTCWT + SR CVT + SR Wavelet fusion


