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Abstract
Objective. Cerebral CTperfusion (CTP) imaging ismost commonly used to diagnose acute ischaemic
stroke and support treatment decisions. ShorteningCTP scan duration is desirable to reduce the
accumulated radiation dose and the risk of patient headmovement. In this study, we present a novel
application of a stochastic adversarial video prediction approach to reduce CTP imaging acquisition
time.Approach. A variational autoencoder and generative adversarial network (VAE-GAN)were
implemented in a recurrent framework in three scenarios: to predict the last 8 (24 s), 13 (31.5 s) and 18
(39 s) image frames of theCTP acquisition from thefirst 25 (36 s), 20 (28.5 s) and 15 (21 s) acquired
frames, respectively. Themodel was trained using 65 stroke cases and tested on 10 unseen cases.
Predicted frameswere assessed against ground-truth in terms of image quality and haemodynamic
maps, bolus shape characteristics and volumetric analysis of lesions.Main results. In all three
prediction scenarios, themean percentage error between the area, full-width-at-half-maximumand
maximumenhancement of the predicted and ground-truth bolus curvewas less than 4± 4%. The
best peak signal-to-noise ratio and structural similarity of predicted haemodynamicmapswas
obtained for cerebral blood volume followed (in order) by cerebral blood flow,mean transit time and
time to peak. For the 3 prediction scenarios, average volumetric error of the lesionwas overestimated
by 7%–15%, 11%–28%and 7%–22% for the infarct, penumbra and hypo-perfused regions,
respectively, and the corresponding spatial agreement for these regions was 67%–76%, 76%–86%and
83%–92%. Significance. This study suggests that a recurrent VAE-GANcould potentially be used to
predict a portion of CTP frames from truncated acquisitions, preserving themajority of clinical
content in the images, and potentially reducing the scan duration and radiation dose simultaneously
by 65%and 54.5%, respectively.

1. Introduction

Amultimodal Computed Tomography (CT) imaging regime, including non-contrast CT (NCCT), CT
perfusion (CTP) andCT angiography (CTA), is commonly used for diagnosis and determining the best
treatment options for acute ischaemic stroke patients (Ledezma andWintermark 2009,Morgan et al 2015,Heit
andWintermark 2016). In quantitative CTP analysis, haemodynamic parameters such as cerebral blood volume
(CBV), cerebral blood flow (CBF), mean transit time (MTT) and time to peak (TTP) are derived fromCTP

OPEN ACCESS

RECEIVED

16October 2022

REVISED

8 June 2023

ACCEPTED FOR PUBLICATION

16 June 2023

PUBLISHED

31 July 2023

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 4.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2023TheAuthor(s). Published on behalf of Institute of Physics and Engineering inMedicine by IOPPublishing Ltd

https://doi.org/10.1088/1361-6560/acdf3a
https://orcid.org/0000-0001-7559-5297
https://orcid.org/0000-0001-7559-5297
https://orcid.org/0000-0003-2536-2190
https://orcid.org/0000-0003-2536-2190
https://orcid.org/0000-0003-3297-5390
https://orcid.org/0000-0003-3297-5390
mailto:dashtbani.2009@gmail.com
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/acdf3a&domain=pdf&date_stamp=2023-07-31
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/acdf3a&domain=pdf&date_stamp=2023-07-31
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0


source data for each voxel of the brain usingmathematicalmodels (DashtbaniMoghari 2022). Based on
estimated perfusionmaps, the voxel-wise status of the brain tissue can be determined—specifically, the extent of
hypo-perfused regions including irreversibly damaged tissue (infarct core) and potentially salvageable tissue
(penumbra) (DashtbaniMoghari 2022).

ACTP imaging protocol involves the rapid acquisition of successive volumetric frames, each covering all/
part of the brain, over∼1–2 min after contrast agent administration. There are two important limitations
associatedwith this protocol. Firstly, the acquisition delivers a radiation dose of 5–6 mSv to the patient
(Manniesing et al 2015), not excessive on its own, but largewhen considered alongside the dose fromNCCT,
CTA and other potential follow-upCT scans post treatment. Therefore, reducing the radiation dose fromCTP
imagingwithout compromising the image quality or the accuracy of haemodynamicmodelling is highly
desirable, especially for younger adults and paediatric patients who aremore likely to be impacted by the long-
term stochastic effects of ionising radiation (Wolterink et al 2017,Moghari et al 2019a). The second limitation is
the risk of patient headmovement during the procedure, especially during the terminal phase of the scan
(Hanzelka et al 2013,Moghari et al 2019b). Thismovement results in streaks, distortion and blurring of
reconstructed images that can impact the downstreamhaemodynamicmodelling (Popilock et al 2008, Yazdi and
Beaulieu 2008). An obviousmotionmitigation strategy is to reduce the total scan time, however this truncates
the late contrast concentrationmeasurements which are important for image-based stroke analysis (Copen et al
2015, Kasasbeh et al 2016,Moghari et al 2021a).

Several paradigms have been investigated to reduce the total radiation dose inCTP imaging. Themost
intuitive approach is to reduce the dose per framewhile preserving the total number of frames and the total scan
time.Manymethods have been reported to denoise low-doseCT images from shorter acquisitions, including
frames fromCTP imaging. Relatedwork can be classified into sinogramdomain filtrationmethods (Wang et al
2005, Karimi et al 2016), statistical iterative reconstructionmethods (Kim et al 2015, Lee et al 2019), and image
post-processing techniques that include traditionalfilter-basedmethods (Mendrik et al 2010, 2011, Pisana et al
2017) andmore recent deep learning-basedmethods (Wolterink et al 2017,Moghari et al 2019a 2021a). Thefirst
two approaches are not practical inCTP imaging of acute stroke due to limited access to the raw sinogramdata
acquired on commercial scanners, high computational cost, and time delays between acquisition and
reconstruction. By contrast, deep learning-based post-processing techniques are very promising for the
restoration of low-dose CTP frames (e.g Kadimesetty et al (2018), Liu and Fang (2018),Moghari et al (2021a)).

A secondway to reduce radiation dose inCTP imaging is to collect fewer frames by increasing the frame-to-
frame time interval, and then to estimate themissing (down-sampled) frames.Missing frames can be estimated
using traditional or CNN-based interpolation of the image time series (Xiao et al 2019, Zhu et al 2020), typically
based on the two neighbouring frames. Potentiallymore reliable interpolationmight be achieved using
additional images in the sequence, however only if these frames are not degraded by intra- or inter-frame
motion.

Although both of these paradigms are effective in reducing the radiation dose, the total scan time—and thus
the likelihood ofmotion—is unchanged. A third approach to dose reduction inCTP is to reduce the number of
frames by reducing the total scan time. This has the advantage of simultaneously reducing the radiation dose and
the likelihood of headmotion, which ismore common in late frames. In this study, we present a novel
application of a stochastic video prediction (SVP) technique to demonstrate the feasibility of this approach.
Despitemany interesting applications of SVP in video analysis (Kumar et al 2019, Villegas et al 2019, Franceschi
et al 2020), to date it has not been applied toCTPdata.Most SVP applications are limited to 3D spatiotemporal
video data (2D+ time) and are not designed to handle 4Ddynamic volumetric data (3D+ time) as is obtained in
CTP imaging.We describe and test a SVP approach in a recurrent framework (Medsker and Jain 2001) to predict
the last 8 (24 s), 13 (31.5 s), or 18 (39 s)CTP image frames froma sequence of initial 25 (36 s), 20 (28.5 s) or 15
(21 s) acquired frames, respectively. Unlike the frame interpolation techniques, our approach estimates later
frames based on the preceding sequence of dynamic data. It is, therefore, a genuine predictive approach. In this
workwe investigate the feasibility and initial validation of the approach for clinical CTPdata.

2.Materials andmethods

2.1. CTperfusion data and data pre-processing
The retrospective dataset comprisedCTP studies from75 consecutive patients (42males (56%), 33 females
(44%)), who showed occlusion in the right or leftmiddle cerebral artery onCTA, presenting toWestmead
Hospital, Sydney in 2018. The average age of the patients was 71 yr (SD 15 yr, range 35–92 yr). Data collection
and analysis were performed in accordance with an approved human ethics protocol.

TheCTP images were acquired using a dual-source, dual-energy Siemens SomatomForce CT scanner in 4i
cinemodewith 1min acquisition at 70 kVp and 200 mAs. Source rotation timewas 250 mswith 1120 projection
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views per rotation. A standard foamheadrest was used to limit patient headmovement during the acquisition.
TheCTdose index (CTDIvol) and dose-length product of the CTP scanswas 159.8 mGy and 2398.0 mGy.cm,
respectively. At the start of the scan,∼45 ml of non-ionic iodinated contrast agent was administered
intravenously at 7ml s−1 via a power injector with a 5 s delay. 33 brain volumeswere acquired over the 1min
scan at 1.5 s intervals for the first 25CT volumes and 3 s intervals for the last 8 volumes. To cover the full brain,
eachCT volume comprised 22 axial slices with 5mm thickness. Slices were reconstructed in a 512× 512matrix
with 0.43 mm in-plane resolution.

All studies were pre-processed by removing the background and skull from the reconstructed image slices
and scaling the intensity of brain voxels linearly from−1 to 1.

2.2.Model components and architecture
Weused the stochastic adversarial video prediction (SAVP)model proposed in Lee et al (2018). Themodel
combines a variational autoencoder (VAE) (Kingma andWelling 2013) andGANs (Goodfellow et al 2014) in a
recurrent framework (Sherstinsky 2020) that allows previous outputs (predictions) to be fed back to themodel as
inputs. In the following sub-sections, we first describe the principle of VAE andGANmodels and then the
specific architecture of the proposedVAE-GANmodel for application toCTP analysis (Lee et al 2018).

2.2.1. Variational auto encoder (VAE)
AVAE consists of two connected neural networks, the encoder and decoder. The encoder takes an input data
sample x and compresses (encodes) it into amore compact representation z, known as the latent variable, in a
lower dimensional space called the latent space. In latent space, similar data points aremore proximate, forming
clusters. The decoder learns to reconstruct (decode) the latent representation back to the original data space. To
avoid discontinuities in the latent space (i.e. gaps between clusters), the posterior distribution q z x( ∣ ) is calculated
by assigning amean, ,m and standard deviation, ,s to each randomvariable in the latent space. This stochastic
generation of variables introduces local variation, resulting in a smooth latent space within and around the
clusters. The encoder, however, can learn very different m and s values for the different classes (clusters), thus
introducing discontinuity between them. Ideally, different classes should be as close to each other as possible
while still being distinct, allowing for smooth sampling and efficient decoding to the data space. This proximity
and differentiation requirement is enforced usingKullback–Leibler divergence (DKL) in theVAE loss function.
DKL measures the divergence between the posterior q z x( ∣ ) and prior p z( ) distributions, andminimizing DKL

optimizes m and s by forcing these distributions to be closer. TheVAE loss ( VAE ) is thus given by:

D , 1VAE KL ( )ℓ= + 

where ℓ and DKL refer to the reconstruction error andKullback–Leibler (KL)divergence, respectively, and are
defined according to:

p x zlog 2q z x [ ( ∣ )] ( )ℓ ( ∣ )= -

D D q z x p z q z x
q z x

p z
log , 3

z
KL KL ( ( ∣ )∣∣ ( )) ( ∣ ) ( ∣ )

( )
( )å= =

p x z( ∣ ) refers to the conditional distribution of the data x given the latent variable z and represents the likelihood
of observing x given z. It is sometimes referred to as the decoder of theVAE,mapping a latent variable z to an
observation x in the data space.  refers to the expectation operator, which calculates the average value of a
function over a given probability distribution. q z x( ∣ ) denotes the expectationwith respect to q z x ,( ∣ ) which is the
posterior distribution and represents whatwe know about latent variable z after observing some data. In other
words, q z x( ∣ ) is a probability distribution that represents our updated belief or uncertainty about the value of z
after observing some data. D q z x p zKL ( ( ∣ )∣∣ ( )) represents the KL divergence between the probability
distributions q z x( ∣ ) and p z .( ) Byminimizing reconstruction error ℓ and D ,KL theVAE aims to learn a good
approximation of the underlying data distribution and a useful representation of the input data in the latent
space.

2.2.2. Generative adversarial network (GAN)
TheGANconsists of a generator network, G, and discriminator network, D, in competition. The generator
learns tomap (decode) the latent variables z to the data space while the discriminator, which is simply a
classifier, tries to distinguish real data x p x( )~ from generated data x p xˆ ( ˆ)~ provided by G.The objective of
theGAN is to determine the binary classifier that optimally distinguishes between the real and generated data
and simultaneously enables G tofit the true data distribution.

The generator and discriminator are trained alternately tominimize andmaximize the objective function in
turn. The objective function of theGAN, G D, ,GAN( ) is defined as:
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G D D x D xargmin max , log log 1 . 4G D x p x x p xGAN( ( )) [ ( ( ))] [ ( ( ))] ( )( ) ( ) = + -  ^^ ^

2.2.3.Model architecture
OurVAE-GANmodel was designed to predict the last 8, 13 or 18CTP frames from the sequence of 25, 20 or 15
initial frames, respectively. TheVAE component of themodel is responsible for learning the underlying
distribution of the input sequential data and generating a diverse set of predictions that cover awide range of
possible future frames. This is important in the context of CTP data, where tissue types can exhibit a diverse
range of shapes for their time attenuation curves (TACs). However, VAE-generated predictionsmay lack certain
details and appear blurry. To overcome this limitation, theGAN component is used to refine these predictions
andmake themmore realistic. Thus, the combination of VAE andGAN components allows ourmodel to
generate predictions that are both diverse and realistic, sampling a range of possible futureswhilemaintaining a
high level of detail.

Themodel architecture is shown infigure 1.During the training phase (figure 1(a)), the recurrent generators
(G) are conditioned on the previous frame xt 1˜ - and random latent code zt 1- to predict the next frame x .tˆ Here
the previous frame xt 1˜ - could either be a ground-truth frame xt 1- (as for the initial frame), or the last prediction
x .t 1ˆ - As explained in Lee et al (2018), the network uses a convolutional long short-termmemory, implying that it
can remember information derived from all earlier frameswhen predicting frame xtˆ from frame x .t 1˜ - The use of
a random latent code in the SAVPmodel can improve both the diversity and flexibility of the generated
predictions, as well as the ability of themodel to generalize to new and unseen situations, by combining the
randomness of a latent codewith the context provided by the previous frame. As shown infigure 1(a), the latent
code zt 1- is sampled from two distributions at each time step: (1) a single posterior distribution q z xt t t1 1:( ∣ )- -

estimated by an interface encoder network (E), a feed-forward network encoding two ground-truth adjacent 3D
(2D space+ time) frames (x x,t t1- ) denoted by x ,t t1:- and (2) the prior distribution p z ,t 1( )- which is
implemented using a standardGaussian distributionwith zeromean and unit variance. The proposedVAE-
GANmodel jointly optimises theVAE andGAN losses during the training. Themodel objective, ,VAE GANs- is
defined as:

G E D E G D G E D

argmin max

, , , , , 5

G E D D, , VAE GANs

1 1 KL KL GAN GAN GAN
VAE

VAE

GAN VAE( )

( ) ( ) ( ) ( ) ( )l l

=

+ + +

-

  

where 1 is the 1 penalty between the predicted frame xtˆ and ground-truth frame x ,t GAN is the objective of
theGANwith discriminator DGAN and latents sampled from p z ,t 1( )- and GAN

VAE is similar to GAN except that it
uses the latents sampled from q z xt t t1 1:( ∣ )- - and has a separate discriminator DVAE (figure 1(a)). 1l and KLl are
hyperparameters chosen by evaluating similaritymetrics on the validation set during training.

Figure 1.Block diagramof theVAE-GANmodel used to predict late CTP frames (xtˆ ) from the sequence of previous (i.e.measured)
frames (xt ) shown in the training phase (a) and the testing phase (b), whereE, G, D, p and q refer to the encoder, generator,
discriminator, and prior and posterior distributions, respectively, 1 is the 1 norm, and DKL is the Kullback–Leibler divergence
between p and q (seemain text for details).
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During the testing phase (figure 1(b)), the generator takes in the previous frame xt 1˜ - and random latent code
zt 1- sampled from a prior distribution p zt 1( )- to synthesise the next frame x .tˆ The process iterates at each
successive time stepwith the synthesised frames being fed back into the generator.

2.3. Network training and hyperparameter settings
The networkwas implemented in TensorFlow (Abadi et al 2016) and trained on a dedicatedworkstationwith a
NVIDIAGeForce RTX 2080TiGPU.Weperformed 650 000 iterations of the Adamoptimizer (Kingma and
Ba 2014) to train themodel. The learning rate was decayed to zero linearly for the last 20 000 iterations. For the
GANmodels, an optimizer with 1b = 0.5, 2b = 0.999 and a learning rate of 0.0002was used. The estimation error
term 1l was set to 100 since this resulted in the best similarity performance on the validation set. For theVAE
model an optimizer with 1b = 0.9, 2b = 0.999 and a learning rate of 0.001was used.

Our data preparation step involved converting the 4DCTPdata (3D space+ time) into 3D (2D space+
time) by stacking 2D slices from the same brain region captured at different time points. The networkwas
trained using 65CTP studies (47 190 2D slices) and tested using 10 randomly selected studies. The training
dataset was augmented to a virtual size of 195 studies by creating 2 augmented studies for each original study
using randomly applied rotation and scaling.

2.4.Model validation andperformance assessment
Themodel described in the previous sections allows us to predict frames x t t, , , 33t cut{ }Î ¼^ givenmeasured
frames x t t, 1, , 1 .t cut{ }Î ¼ - We tested the performance of thismodel for three increasingly challenging
prediction tasks, corresponding to t 26,cut = t 21cut = and t 16,cut = i.e. predicting 8, 13 and 18 frames,
respectively.

Themost challenging prediction task involved predicting the last 18 frames from the first 15 frames. Thefirst
15 frames often capture thewash-in of the contrast agent in the TAC, andwe chose this task to evaluate howwell
themodel predicts the entire wash-out passage, given thewash-in passage of the contrast agent. In the other two
prediction tasks, some part of thewash-out passage of the contrast agent was given to themodel,making these
tasks less challenging than the first task.

2.4.1. Image qualitymetrics
The image quality of slices in predicted and ground-truth frameswas compared using threemetrics (Yu et al
2019): peak signal-to-noise ratio (PNSR), rootmean squared error (RMSE) and structural similarity index
(SSIM). PNSR is defined as:

x x
NR

x x
PSNR , 10 log , 6t t

t t

2

2
2⎜ ⎟

⎛
⎝

⎞
⎠

( ) ( )
 

=
-

^
^

where R and N denote themaximumdynamic range of the image and the total number of voxels in the brain
region, respectively. PSNR is a relative image quality estimate usually expressed in decibels, higher PNSR can be
indicative of better quality of the predicted set. RMSE is defined as:

x x
x x

N
RMSE , , 7t t

N t t
2

( )
( )

( )=
å -

^
^

and quantifies the discrepancy per voxel between the ground-truth and predicted images. Lower RMSE (close to
zero) can indicate higher quality of estimated images. SSIM is defined as:

x x
c c

c c
SSIM ,

2 2
, 8t t

x x x x

x x x x

1 2

2 2
1

2 2
2

t t t t

t t t t

( )
( )( )

( )( )
( )

m m s

m m s s
=

+ +

+ + + +
^ ^ ^

^ ^

where ,xtˆm xt
m and ,xtˆs xt

s are themean and variance, respectively, of xtˆ and x ,t x xt tˆs is the covariance of xtˆ
and x ,t c R0.011

2( )= and c R0.032
2( )= (Wang et al 2003). Since both PSNR andRMSE are based on themean-

squared-error (MSE) between the ground-truth and predicted set, they are susceptible to bias fromover-
smoothing. SSIM is a useful complement to PSNR andRMSE andmeasures the perceived alteration in structural
information between two images. SSIM ranges from0 to 1, with higher SSIM indicating greater similarity
between the two images. Themetrics were calculated for each test study individually and then averaged across all
10 test studies. The same quantitativemetrics were used to evaluate the associated perfusionmaps derived from
theCTP images.

2.4.2. Bolus shape analysis
Since the shape of the contrast bolus affects the evaluation of the tissue status, we compared the characteristics of
the contrast bolus passage determined from the predicted and ground-truth images to aid assessment of the
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approach. The venous output function (VOF)was used to represent the bolus shape for each patient in the test
group (Kasasbeh et al 2016). VOF is a straightforward signal to determine due to its large dimension and is less
susceptible to the partial volume effect compared to the arterial input function (AIF).

TheVOFwas localised semi-automatically by searching for a voxel with the highest area under the time-
attenuation curve (TAC)withinmanually defined square regions of interest (ROI) placed on the straight or
sagittal sinus. The sameROIswere placed on the corresponding predicted and ground-truth images.Wefitted
thefirst-pass bolus in theVOF graph to a gamma-variate curve (Bennink et al 2015, Kasasbeh et al 2016) to
obtain a robust estimate of the area under the curve (AUC), bolus peak height (Cmax), andVOFwidth defined as
the full-width-at-half-maximum (FWHM) of thefitted gamma-variate curve.We also compared the average
VOFobtained frompredicted and ground-truth images for patients in the test group. As bolus arrival timewas
different for each patient, all VOFswere aligned to their time-to-peak before averaging (Bennink et al 2015).

2.4.3. Infarct and penumbra size and location
Since the size and extent of the infarct and penumbra is vital for stroke physicians to determine the best
treatment options for patients, we also compared the spatial agreement of these regions derived from the
ground-truth and predicted haemodynamicmaps.

The sizes of the infarct and penumbrawere computed by thresholding the perfusion parameters in the
predicted and ground-truth haemodynamicmaps using the thresholds described in (Yu et al 2016): the
penumbral regionwas defined by a delay� 3 s relative to the normal hemisphere, and infarct core was defined as
the sub-region of the penumbrawith rCBF� 30%. The delay in the pathological hemisphere was expressed as
the difference between the TTP values of each voxel in the ipsilateral hemisphere from themeanTTP of the
contralateral hemisphere. rCBF denotes the percentage ratio of theCBF in the ipsilateral hemisphere to the
meanCBF in the contralateral hemisphere. Infarct and penumbra volumeswere calculated from the predicted
and ground-truth haemodynamicmaps and the average lesion size estimation error, A, and average relative
lesion size estimation error, A ,rel were computed as (Moghari et al 2021a):

A
A A

n
a9i

n
i i1 Test GT( )

( )å
=

-
=

A

A A

A

n
b, 9

i

n i i

i
rel

1
Test GT

GT

⎜ ⎟
⎛
⎝

⎞
⎠ ( )

å
=

-
=

where A iGT and A iTest represent the lesion size in the ground-truth and test (predicted) images for test case i,
respectively. The variable i represents the individual test case number, while n denotes the total number of test
cases. For each test case, we calculated the error and relative error, and then reported themean and standard
deviation of these twometrics across all test cases.

Spatial agreement for the lesionwas quantified using the dice coefficient (F1-score), defined as:

Dice coefficient 2
1

Precision

1

Sensitivity
, 10

1

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥ ( )= +
-

where precision and sensitivity were defined as:

Precision
TP

TP FP
11( )=

+

Sensitivity
TP

TP FN
, 12( )=

+

where TP denotes true positive voxels (correctly classified infarct/penumbra tissue), FP denotes false positive
voxels (healthy tissuemisclassified as infarct/penumbra) and FN denotes false negative voxels (infarct/
penumbra tissuemisclassified as healthy) (figure 2). The highest possible value of the dice coefficient is 1, which
indicates 100% spatial agreement between lesion estimates in the predicted and ground-truth data.

3. Results

3.1. Analysis of CTP images
Figure 3 shows the PSNR, RMSE and SSIM image quality results for the predicted CTP frames. These data
indicate that image quality degradedmonotonically from early predicted frames to late frames for allmetrics and
regardless of howmany frameswere being predicted. The ranges of average PNSR, RMSE, and SSIMwere
47.48–36.50 dB, 0.004–0.015, and 0.997–0.937, respectively. The degradationwas approximately linear with
frame number for RMSE and SSIM.Moreover, for all threemetrics the standard deviation increased over these
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frames, suggesting that performance of themethod becomesmore variable themore distant the predicted
frames are frommeasured data. Figure 4 shows some representative examples of how the image quality
degradationmanifests, including increased blurring of late predicted frames.

3.2. Analysis of bolus shape
Table 1 shows the results of bolus shape analysis for the three cases of predicting 8, 13 and 18CTP frames,
respectively. The lowest percentage difference between theVOFderived frompredicted versus ground-truth
imageswas observed for AUC followed (in order) by Cmax and FWHM. Figure 5 shows the bolus shape analysis
curves for themost challenging scenario of predicting the last 18 frames (typically, the entire downslope of the
TAC) given the initial 15 frames.

3.3.Haemodynamics and lesion analysis
Figure 6 shows the predicted and ground-truth haemodynamicmaps for CBV,CBF,MTT, andTTP.Differences
are difficult to discern visually for CBV andCBF, whereas forMTT andTTP it is clear that the predictedmaps
tended to overestimate.

This was confirmed by the quantitative comparison of haemodynamic parameters, summarised in tables 2
and 3. The best agreement in image quality (table 2)was observed for CBV followed (in order) byCBF,MTT and
TTP. Evaluation of the spatial agreement of the lesion volume in the ground-truth and predicted images (table 3)

Figure 2.A typical lesion summarymap. The red border indicates the lesion estimate obtained using the proposedVAE-GANmaps
and the green region indicates the lesion estimate obtained using the ground-truth haemodynamicmaps. The false positive (FP,
healthy tissuemisclassified as abnormal), false negative (FN, abnormally perfused tissuemisclassified as healthy), true positive (TP,
correctly classified abnormally perfused tissue) and true negative (TN, correctly classified normally perfused tissue) regions are shown
for this example.

Figure 3.Average PSNR, RMSE, and SSIM (mean± SD) of the predictedCTP frames computed for 10 test studies. In each plot the
green curve shows predictedCTP frames 26–33 estimated from frames 1–25, the purple curve represents predicted CTP frames 21–33
estimated from frames 1–20, and the black curve shows themetric for predictedCTP frames 16–33 estimated from frames 1–15.
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showed the average dice coefficient of the infarct, penumbra, and hypo-perfused regionwas between 67%–76%,
76%–86%and 83%–92%, respectively. The total hypo-perfused region showed greater average precision,
sensitivity and dice coefficient compared to either infarct or penumbra. The lesion size errormetrics (A and Arel

in table 3) indicated an overestimation of the average lesion volume between 7%–15% for the infarct, 11%–28%
for the penumbra, and 7%–22% for the hypo-perfused regions. In allmetrics, the best values were obtained
when predicting the least number of frames, and the poorest values obtainedwhen predicting themost.

4.Discussion

In this studywe conditioned a SAVP approach using sequences of the first 25 (36 s), 20 (28.5 s), and 15 (21 s)
reconstructed frames of a CTP study to predict the last 8 (24 s), 13 (31.5 s), and 18 (39 s) frames in order to
reduce both the scan duration and the radiation dose. Feasibility of themethodwas assessed based on the image
quality of theCTP images and haemodynamicmaps, and bolus shape and volumetric lesion characterisation.

Figure 4.Examples of image quality degradation from early predicted frames to late frames. Row (a) shows ground-truthCTP frames.
Rows (b)–(d) show the corresponding predicted frames estimated from frames 1–15 (b), frames 1–20 (c), and frames 1–25 (d). The
pixel values are normalised between 0 (black) and 1 (white).

Table 1.Comparison of thefittedVOF characteristics (AUC, FWHM
and Cmax) in the ground-truth and predictedCTP images for 3 cases:
predicting frames 26–33 using frames 1–25, predicting frames 21–33
using frames 1–20, and predicting frames 16–33 using frames 1–15.
Values shown represent themean percentage error±1 standard
deviation andwere computed over 10 test cases.

Predicted frames AUC FWHM Cmax

26–33 1.12± 0.76 2.65± 1.94 1.77± 0.37

21–33 1.18± 0.78 2.84± 2.01 1.88± 0.43

16–33 1.70± 1.36 3.74± 3.25 2.70± 2.10
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The tendency of the image quality of predicted frames to degradewith frame number (figure 3), with greater
error for later frames, is expected from the recurrentmodel since theVAE-GANestimates each frame based on a
sequence of initial ground-truth frames and previous predicted frames. The cumulative error reduces when the
modelmakes predictions based on a higher number of initial ground-truth frames.

Figure 5.Themean fitted venous output function (VOF) for the case of predicting frames 16–33 using frames 1–15, computed for 10
test cases: (a) ground-truth, (b) predicted, and (c) overlay of (a) and (b). The shaded regions indicate±1 SD. The peak enhancement of
all VOFswere aligned prior to averaging.

Figure 6.Ground-truth hemodynamicmaps (first column) and the corresponding predictedmaps estimated from frames 1–25
(second column), frames 1–20 (third column), and frames 1–15 (fourth column) using the VAE-GANmethod. Rows from top to
bottom showCBV,CBF,MTT andTTPmaps.
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Similarly, the haemodynamics results (table 2) showed higher quality for perfusionmaps computed from
models using a higher number of initial ground-truth frames. The results also indicated that CBV is always the
easiest parameter to predict reliably into the future, andTTP is themost difficult. A likely reason for this is that
CBV is calculated from theAUCof the impulse response function, whichmakes it less susceptible to the TAC
noise.However, TTP is estimated based on the time to themaximum (a single value) of the TAC,which ismuch
more susceptible to noise.

Predicting a portion of CTP frames from truncated acquisitions resulted in less than 4± 4%difference on
bolus shapemetrics (average AUC, FWHM, and Cmax ) compared to using all frames (table 1). However, the
most important comparison from a clinical perspective (lesion analysis, table 3) indicated systematic
overestimation of the infarct and penumbra in the predicted images, which reduced formodels using a higher
number of initial ground-truth frames. Since the infarct and penumbra volumes are calculated by thresholding
the perfusion parameters, optimising the thresholds for the predicted haemodynamicmaps could potentially
reduce the overestimation. However, it was beyond the scope of this study to determine if such optimised
thresholds exist, or to determine if the observed lesion overestimations using standard thresholds were clinically
significant. Both the infarct and penumbra have delayed and very noisy TACs (figures 7(c), (d)), with the
temporal changes in voxel values as low as 10–20HU. By contrast, the TACs for regions of healthy brain
(figures 7(a), (b)) exhibit a well-defined shape and temporal enhancement from the passage of contrast agent.
Therefore, the prediction and differentiation of the voxels in the infarct and penumbra regions is amore
challenging task compared to the healthy regions. Our results showed the lesion characterisation of hypo-
perfused brain (i.e. combined infarct and penumbra)was generally better than either infarct or penumbra alone.
This indicates that although ourmethod results in a loss of accuracy in delineating these two regions, itmay
remain quite robust in identifying regions of reduced perfusion.

There are several potential advantages of using the proposedVAE-GANapproach inCTP imaging. Firstly, it
can be used to reduce the scan duration, thereby reducing the likelihood of patient headmovement during the
terminal phase of the scan (Moghari et al 2021b) in addition to the radiation dose. For example, prediction of the
last 18 (39 s)CTP frames from thefirst 15 (21 s) frames reduces the scan duration and radiation dose by around

Table 2.PSNR, RMSE and SSIM (mean± SD) of haemodynamicmaps computed for predicted frames 26–33, 21–33, and 16–33,
respectively, averaged across 10 test studies. The units of the RMSE areml/100 g andml/100 gmin−1 for CBV andCBF, respectively, and
seconds forMTTandTTP.

Perfusionmap Predicted frames PSNR RMSE SSIM

CBV 26–33 38.24± 2.04 1.44± 0.38 0.98± 0.01

21–33 36.39± 3.07 1.69± 0.42 0.98± 0.02

16–33 33.42± 7.47 2.06± 0.78 0.97± 0.03

CBF 26–33 32.86± 2.08 2.74± 0.27 0.97± 0.02

21–33 30.31± 2.77 2.88± 0.32 0.96± 0.02

16–33 26.97± 5.35 3.10± 0.50 0.94± 0.03

MTT 26–33 25.63± 2.73 3.22± 0.36 0.91± 0.03

21–33 24.10± 2.76 3.57± 0.35 0.89± 0.02

16–33 21.06± 3.47 3.96± 0.45 0.87± 0.03

TTP 26–33 24.46± 2.65 3.48± 0.42 0.88± 0.04

21–33 22.35± 3.87 3.86± 0.88 0.86± 0.04

16–33 18.14± 4.65 4.45± 0.72 0.83± 0.05

Table 3. Lesion size characterisation (mean± SD) computed for predicting frames 26–33, 21–33, and 16–33 from the initial 25, 20,
and 15 frames, respectively, averaged across the 10 test studies.

Lesion Predicted frames Precision Sensitivity Dice A(ml)a A
rel

b

Infarct 26–33 0.76± 0.08 0.77± 0.03 0.76± 0.06 4.00± 6.17 0.07± 0.06

21–33 0.69± 0.13 0.78± 0.02 0.73± 0.08 7.02± 6.51 0.11± 0.11

16–33 0.62± 0.21 0.72± 0.26 0.67± 0.23 7.58± 7.92 0.15± 0.14

Penumbra 26–33 0.77± 0.19 0.97± 0.10 0.86± 0.14 10.02± 9.32 0.11± 0.13

21–33 0.75± 0.18 0.95± 0.0.09 0.84± 0.14 15.67± 13.71 0.15± 0.13

16–33 0.68± 0.12 0.86± 0.07 0.76± 0.09 20.78± 12.89 0.28± 0.18

Hypo-perfused 26–33 0.87± 0.05 0.97± 0.03 0.92± 0.04 13.25± 4.72 0.07± 0.06

21–33 0.81± 0.11 0.96± 0.03 0.88± 0.07 19.94± 11.42 0.12± 0.09

16–33 0.76± 0.08 0.92± 0.09 0.83± 0.07 28.36± 14.11 0.22± 0.11

a See equation (9a).
b See equation (9b).
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62%and 55%, respectively. Secondly, themodel was fully automated and able to predict the late frames of the
whole brain volume in around 30 s in the testing phase. This is in accordance with the requirements for a
practical approach in time-critical acute ischaemic strokemanagement. A further potential application of the
method is to replacemotion-corrupted frameswith higher quality predicted frames in a standardCTPprotocol.
This will be investigated in futurework.

Although our results suggest that the proposedVAE-GAN is promising as a potential practicalmethod to
reduce scan duration inCTP imaging, there are some important limitations which should temper the
conclusions outlined above. Firstly, the size and diversity of the training set could affect themodel performance.
Our training set was relatively small (65 studies, tripled using data augmentationmethods) and performance
should therefore be tested for amuch larger cohort of CTP studies inwhich the lesion size distribution is greater.
Secondly, the clinical content of the predicted imagesmust be further assessed to determine how treatment
decisions would be impacted by reducing scan time. Thirdly, the generalisability of the SAVP approach in the
CTP application should be evaluated beyond the single scanner and single protocol tested in this study.

5. Conclusion

In this study, we introduced and assessed a novel application of a deep learning approach to predict late CTP
image frames from the early frames. Themethod has important potential implications for reducing the radiation
dose and simultaneously reducing the probability of patient headmovement in the terminal phase of the scan.
Further clinical evaluation is needed to fully assess the utility of themethod in practice, determining if the
approach canmatch the clinical outcomes of analyses based on standardCTPprotocols, and assessing the
generalisability of themethod across amore expansive training/testing set of individuals and scanners.
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