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Abstract
Manual segmentation poses a time-consuming challenge for disease quantification, therapy evaluation, treatment planning, 
and outcome prediction. Convolutional neural networks (CNNs) hold promise in accurately identifying tumor locations 
and boundaries in PET scans. However, a major hurdle is the extensive amount of supervised and annotated data necessary 
for training. To overcome this limitation, this study explores semi-supervised approaches utilizing unlabeled data, specifi-
cally focusing on PET images of diffuse large B-cell lymphoma (DLBCL) and primary mediastinal large B-cell lymphoma 
(PMBCL) obtained from two centers. We considered 2-[18F]FDG PET images of 292 patients PMBCL (n = 104) and DLBCL 
(n = 188) (n = 232 for training and validation, and n = 60 for external testing). We harnessed classical wisdom embedded 
in traditional segmentation methods, such as the fuzzy clustering loss function (FCM), to tailor the training strategy for a 
3D U-Net model, incorporating both supervised and unsupervised learning approaches. Various supervision levels were 
explored, including fully supervised methods with labeled FCM and unified focal/Dice loss, unsupervised methods with 
robust FCM (RFCM) and Mumford-Shah (MS) loss, and semi-supervised methods combining FCM with supervised Dice 
loss (MS + Dice) or labeled FCM (RFCM + FCM). The unified loss function yielded higher Dice scores (0.73 ± 0.11; 95% 
CI 0.67–0.8) than Dice loss (p value < 0.01). Among the semi-supervised approaches, RFCM + αFCM (α = 0.3) showed the 
best performance, with Dice score of 0.68 ± 0.10 (95% CI 0.45–0.77), outperforming MS + αDice for any supervision level 
(any α) (p < 0.01). Another semi-supervised approach with MS + αDice (α = 0.2) achieved Dice score of 0.59 ± 0.09 (95% CI 
0.44–0.76) surpassing other supervision levels (p < 0.01). Given the time-consuming nature of manual delineations and the 
inconsistencies they may introduce, semi-supervised approaches hold promise for automating medical imaging segmenta-
tion workflows.
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Introduction

Precise measurement of disease burden is crucial for 
improving therapy response assessment and outcome pre-
diction in lymphoma positron emission tomography (PET) 
scans [1]. The prognostic power of total metabolic tumor 
volume (TMTV), assessed through comprehensive whole-
body 18F-fluorodeoxyglucose 2-[18F]FDG PET scans, has 
undergone thorough validation in the domain of lymphoma 
[2–12]. However, the automated and accurate segmenta-
tion of lesions from whole-body PET images represents a 
significant obstacle that must be overcome to facilitate the 
widespread utilization of quantitative imaging biomarkers 
in clinical settings, such as radiomics analysis. This step is 
essential for computing the total metabolic tumor volume 
(TMTV) and conducting analyses on individual lesions.

Despite the considerable heterogeneity in lesion char-
acteristics such as location, size, and contrast, simple 
thresholding methods continue to be widely used in clini-
cal workflows, particularly for cancer types like lymphoma 
[1, 13, 14]. Integrating the statistical distinctions among 
uptake regions and the surrounding tissues, advanced 
segmentation techniques have been developed, including 
active contour models [15], region growing, and cluster-
ing algorithms such as Gaussian mixture models (GMM) 
[16] or fuzzy C-means (FCM) [17]. Recently Cui et al. 
[18] suggested a technique for lesion segmentation from 
PET images, incorporating definition density peak cluster-
ing to segment the lesion and normal tissue in 2D in an 
unsupervised manner. These techniques aim to enhance 
segmentation accuracy beyond basic methods.

Furthermore, in conventional variational segmenta-
tion approaches, an energy function such as Mumford-
Shah [19] is minimized to classify image voxels (pixels) 
into distinct classes without the need for ground truth or 
supervision [19–21]. While these techniques have been 
extensively employed for medical image segmentation, 
they often come with computational complexity and lim-
ited capabilities in semantic segmentation, often neces-
sitating user input to define parameters or scanner set-
tings [22]. AI has the potential to quantify the disease 
burden by segmenting the TMTV of lymphoma lesions 
[1, 23–26]. Current segmentation approaches have pre-
dominantly emphasized AI-based techniques, often dis-
regarding the potential benefits offered by conventional 
approaches [27]. The effectiveness of supervised AI-based 
techniques improves proportionally with the expansion of 
labeled training data [28, 29]. Consequently, insufficient 
labeled data may hinder performance expectations, mak-
ing semi-supervised approaches beneficial in such cases.

The implementation of advanced supervised learn-
ing methods for tumor segmentation in PET scans faces 

challenges due to the need for precise and consistent 
ground truth annotations in an adequate training data-
set. Ground truth in medical image segmentation refers 
to the precise boundary of the object of interest, typi-
cally determined through histopathological analysis of an 
excised tumor. However, obtaining ground truth data is 
not always feasible [30]. As a substitute, the consensus 
derived from multiple manual segmentations by differ-
ent experts is often used as an alternative form of ground 
truth (with a single expert frequently delineating a given 
tumor in practice) [31, 32]. Nonetheless, intra- and inter-
observer variabilities introduce reproducibility challenges 
in ground truth generation [33] which, in turn, impact the 
performance of supervised learning approaches. Unsuper-
vised segmentation techniques can effectively mitigate the 
impact of uncertainty and inconsistency inherent in ground 
truths during the learning phase.

These limitations serve as a driving force for exploring 
advanced AI techniques that can be trained with varying 
levels of supervision, aiming to alleviate the manual ground 
truth labeling and annotation. Different levels of supervi-
sion can be employed when training a segmentation model, 
ranging from pixel/voxel-level annotations in supervised 
learning [34–36], to image-level or imprecise annotations 
in weakly-supervised learning [37], and even to no annota-
tions in unsupervised learning [38–41]. Shi et al. [42] pro-
posed an unsupervised image generation approach, utilizing 
anatomical-metabolic consistency representations obtained 
from co-aligned PET/CT scans, to enhance the accuracy 
of lymphoma segmentation in PET/CT images, addressing 
limitations posed by insufficient annotated data and tumor 
heterogeneity. Lian et al. [43] introduced an unsupervised 
method PET-CT image segmentation. Their approach 
employed a belief function to effectively represent uncertain 
image information and employed an adaptive distance met-
ric to incorporate spatial information into the segmentation 
process. Joint unsupervised learning was also suggested as 
an approach for segmentation, wherein images are progres-
sively clustered and deep representations are learned using a 
convolutional neural network. Additionally, the combination 
of joint unsupervised learning with clustering techniques 
like k-means was recommended for medical image segmen-
tation [40].

The choice of loss function plays a pivotal role in defining 
the optimization problem and directly impacts the conver-
gence of the segmentation model during training. Kim et al. 
[44] proposed a loss function based on the Mumford-Shah 
(MS) functional, which is designed for unsupervised seg-
mentation. They demonstrated that the discrete implementa-
tion of the MS loss function can be regarded as a k-means 
clustering approach with total variational regularization 
that effectively suppresses noise in the membership func-
tion [44]. By utilizing the MS loss, they were able to train 
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the segmentation network without relying on ground truth 
labels. Additionally, the MS loss term can be incorporated 
into dice or cross-entropy losses as a regularized function 
in supervised approaches, thereby aiding the network in 
enhancing its segmentation performance [44]. Considering 
the inherent suitability of fuzzy clustering methods to the 
low-resolution characteristics of nuclear medicine imaging, 
recent advancements have proposed loss functions based on 
Fuzzy C-Means (FCM) [45] enabling their application in 
supervised, semi-supervised, and unsupervised segmenta-
tion scenarios.

In this paper, we explore the efficacy of semi-supervised 
approaches in the context of lymphoma lesion segmentation 
within PET scans of DLBCL and PMBCL patients. Spe-
cifically, our contributions are twofold: (i) Investigating the 
effectiveness of different semi-supervised approaches. (ii) 
Assessing the adaptability of semi-supervised techniques for 
segmentation of multiple tumor (TMTV) in PET scans. The 
subsequent sections delve into the methods in details, fol-
lowed by presenting the results, discussion and conclusions.

Methods

PET scans

Table 1 summarizes the data used in this study. PET images 
(n = 292) included baseline and interim scans of patients 
with DLBCL (n = 90) from two different centers: BC Cancer 
(BCC) with (n = 86) cases of limited stage diagnosed after 
2005, and St. Mary’s Hospital (SM) with (n = 102) cases 
that were diagnosed after 2014 and stages varied from I to 
IV, and patients with PMBCL (n = 104) from BC Cancer. 
All patients were managed according to the departmental 
protocol (BCC and SM) which states a 6 h fast and sam-
pled blood glucose of < 200 ng/dL prior to the injection of 
300–400 MBq  [18F]FDG followed by a 60-min uptake phase.

Ground truth segmentation

The ground truth volumes of interest (VOI) were delineated 
by experienced nuclear medicine physicians using a built 
in-house semi-automatic workflow for MIM (MIM Software, 
USA), where lesions were drawn utilizing the software’s gra-
dient-based segmentation tools (PETedge and PETedge+), 
designated into different body parts (neck, chest, abdomen 
and pelvis, muscles, bones, central nervous system and 
other). As previously demonstrated [46] this workflow has 
shown reproducibility for lesion segmentation and helps to 
reduce the inter-observer variability.

Preprocessing and data augmentation

PET images were adjusted to a standardized resolution of 
4 × 4 × 2  mm3 using trilinear interpolation and the corre-
sponding segmentation masks have been resized using near-
est neighbor interpolation. A slice thickness of 2 mm was 
specifically chosen to preserve fine image details that might 
otherwise be lost if interpolated at a larger voxel size. This 
resolution is approximately close to the weighted average 
voxel spacing of our dataset. The choice of a non-isotropic 
voxel size (4 × 4 × 2  mm3) was made to balance computa-
tional efficiency with the preservation of the object shape 
to our segmentation objectives. We have selected 4mm 
based on the in-plane resolution that we have in our dataset. 
PET image intensities can exhibit considerable variability 
within and between images. After SUV conversion, PET 
SUV range was transformed from [0, 30] SUV to [0, 1] to 
capture a broader range of intensities. To mitigate these 
intensity differences, we implemented Z-score normaliza-
tion independently for each scan. This normalization process 
involved computing the mean and standard deviation solely 
based on voxels with non-zero intensities corresponding to 
the body region.

To increase the diversity in lesion size and shape, we 
incorporated scaling with a random factor and elastic 

Table 1  Multi-center dataset information from different lymphoma types (all the presented cases were annotated)

Center Lymphoma type Matrix size Voxel spacing  (mm3) Average injected 
radioactivity 
(MBq)

Scanner models

BC Cancer, Canada (BCC) PMBCL 168 × 168 (n = 20)
192 × 192 (n = 84)

4.06 × 4.06 × 2
(n = 20)
4.06 × 4.06 × 3.27 (n = 119)

347.5 ± 52.6 GE (Discovery D600 and 
D690)

BC Cancer, Canada (BCC) DLBCL
(stage I to II)

192 × 192
(n = 86)

3.65 × 3.65 × 3.27
(n = 86)

335.9 ± 50.8

St. Mary’s Hospital, South 
Korea (SM)

DLBCL
(stages I to IV)

168 × 168 (n = 27)
192 × 192 (n = 15)

3.65 × 3.65 × 3.27 (n = 15)
3.65 × 3.65 × 5
(n = 27)

252.0 ± 48.1 GE (Discovery 710)

St. Mary’s Hospital South 
Korea (SM)

DLBCL
(stages I to IV)

168 × 168
(n = 60)

4.07 × 4.07 × 5
(n = 60)

240.5 ± 47 Siemens (Biograph40 
TruePoint)
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deformations as data augmentation techniques. These aug-
mentations were employed to assist the model in learning the 
wide range of lesion sizes and shapes encountered. Several 
augmentation strategies were employed to increase the com-
plexity of the training data, including: (i) spatial and inten-
sity transformations, such as rotation in random directions 
(less than 25° i.e. The rotations were performed in random 
directions with the angle uniformly sampled from the range 
of [0, 25] degrees), (ii) scaling with a random factor within 
the range of 0.8 to 1.2, (iii) elastic deformations, and (iv) 
gamma corrections, where the parameter γ was randomly 
sampled from a uniform distribution spanning 0.8 to 1.2.

Segmentation network architecture

The 3D U-Net architecture [47] consists of standard con-
volutional blocks, which include a 3 × 3 × 3 convolution 
operation, a normalization layer, and a ReLU activation 
function. We utilized residual blocks, accompanied by a 
concurrent spatial and channel squeeze and excitation mod-
ule, denoted as SE normalization (depicted as blue blocks 
in Fig. 1). The SE module gives weight to the feature maps, 
so that the network can emphasize its attention adaptively. 
The SE module “squeezes” along the spatial domain and 
“excites” along the channels, enabling the model to empha-
size meaningful features while suppressing weaker ones. We 
implemented SE normalization layers with a fixed reduction 
ratio (r = 2), which controls the size of the bottleneck within 
the SE normalization layers. Additionally, we used instance 
normalization to reduce memory consumption [48].

Within the network architecture, we used learnable down-
sampling blocks (green blocks in Fig. 1) that consist of a 3 
× 3 × 3 strided convolutional layer, instance norm, ReLU 
activation, and the SE module. In the decoder, upsampling 

blocks using 3 × 3 × 3 transposed convolutions was used 
(yellow blocks in Fig. 1). To further enhance the network 
receptive field, we incorporated a downsampling block with 
a kernel size of 7 × 7 × 7 immediately after the input. Addi-
tionally, the model output, generated by the last convolu-
tional layer, is passed through a sigmoid activation function 
with a kernel size of 1 × 1 × 1. Considering the relatively 
large size of PET images, we adopted a strategy of training 
the 3D model using randomly extracted patches with the size 
of 128 × 128 × 64 voxels, and they do not necessary include 
any parts of a tumor. During training, we employed a batch 
size of 2, allowing for efficient processing of manageable 
subsets of the data while still capturing the essential infor-
mation required for accurate segmentation. We applied a 
threshold of 0.5 to all prediction maps across all approaches 
in this study.

The model underwent 400 epochs of training, utilizing 
the Adam optimizer [41] with β1 = 0.9 and β2 = 0.99 for the 
exponential decay rates of moment estimates. To optimize 
the learning process, we applied a cosine annealing sched-
ule, gradually reducing the learning rate from a maximum 
value of lrmax = 10−4 to a minimum value of lrmin = 10−6 
every 25 epochs. This adjustment was made at each epoch to 
ensure the model ability to converge effectively. All models 
were implemented using Python with PyTorch library. We 
trained and tested all models on NVIDIA V100 GPUs.

Unsupervised learning

Fuzzy clustering‑based loss functions

Unsupervised learning techniques have emerged as valu-
able tools in addressing the limitations posed by the 

Fig. 1  Encoder-Decoder Network with residual blocks. The number 
of output channels is depicted under blocks of each group. Max pool-
ing operations in the encoder of the network are replaced by learnable 

downsampling blocks (green blocks). The upsampling blocks in the 
decoder of the network were implemented by a 3 × 3 × 3 transposed 
convolution instead (yellow blocks)
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scarcity and heterogeneity of labeled data in medical imag-
ing. In the realm of AI loss function design, inspiration 
can be drawn from conventional segmentation methods, 
which serve as a foundation for both supervised and unsu-
pervised approaches. These traditional clustering-based 
techniques, such as k-means, FCM, and GMM, leverage 
objective functions to cluster voxels based on their inten-
sity statistics, enabling segmentation of medical images. 
Among these techniques, FCM stands out due to its sim-
plicity, robustness, and computational efficiency, making 
it widely employed in both supervised and unsupervised 
learning tasks. However, clustering methods like FCM pri-
marily focus on intensity information and often neglect 
crucial spatial details, making them prone to errors caused 
by image noise and artifacts. To overcome this limitation, 
various adaptations of the FCM approach have been pro-
posed. These modifications aim to incorporate spatial 
constraints and contextual information, allowing for the 
influence of neighboring voxel labels on the labeling of 
a given voxel. By integrating spatial information, these 
enhanced versions of FCM enhance segmentation accu-
racy and robustness, addressing the challenges posed by 
noisy and artifact-ridden medical images [49–54]. The 
inclusion of a Markov-random-field (MRF) based regu-
larization term in the Robust FCM (RFCM) enables the 
model to effectively account for variations in membership 
functions within local neighborhoods (equation 1) [55]:

where the membership function u
jk

 represents the fuzzy 
assignment of the jth voxel to the kth class. The class cen-
troid vk is defined and yj denotes the voxel value at location 
j , C indicates the total number of classes while Ω represent 
the spatial domain of the image. The fuzzy overlap between 
clusters is regulated by parameter q and the second term in 
the above expression corresponds the Jspatial. Here, Nj repre-
sents the set of neighboring voxels of voxel j , and Mk is a set 
containing all class numbers except k . The spatial smooth-
ness term is weighted by � to control its impact [45]. To 
solve this optimization problem, the method of Lagrange 
multipliers is employed to enforce the given constraint, and 
partial derivatives with respect to vk and u

jk
 are computed. 

Building upon the definition of the Fuzzy C-Means (FCM) 
objective function, a novel FCM loss function is proposed 
by Chen et al. [45] for both supervised and unsupervised 
training scenarios. By utilizing the principles and concepts 
of the FCM algorithm, the suggested FCM loss function 
serves as a valuable tool in training models for various tasks. 
Its application in both supervised and unsupervised settings 
demonstrates its versatility and effectiveness in capturing 
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and leveraging the inherent characteristics of the data for 
accurate and reliable segmentation.

The membership functions, u, in the proposed method are 
modeled based on the objective function of RFCM. To achieve 
this, the softmax output of the last layer is utilized ( f (y;�)) 
[45]. By employing the softmax function, the membership val-
ues are obtained, reflecting the degree of association of each 
voxel with different classes. This approach leverages the prin-
ciples of RFCM to effectively assign membership values and 
enable accurate and robust segmentation results (equation 2):

where fjk(y;�) is the kth channel softmax output of the CNN 
at location j , and the class mean vk is defined as follows 
(equation 3):

Mumford‑Shah loss function

The MS loss function also helps the network utilize unla-
beled images as elements of the training data (equation 4).

where fjk is the softmax output of CNN, considering that 
c
∑
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|
 is the approximation of total variant of fjk 

and can be approximated by ∇fjk = f(j+1)k − fjk . The average 
voxel intensity is shown by vk here as well. By considering 
� = 0, the LMS loss function is changed to a FCM loss with 
q = 1 [45].

Semi‑supervised learning

The concept of combining a weighted supervised loss 
with an unsupervised loss forms the foundation of semi-
supervised learning techniques, proposed by Kim et al. [44] 
and Chen et al. [44]. In their work, they suggested the idea 
of incorporating a weighted supervised loss alongside the 
unsupervised loss, specifically in scenarios where labeled 
data is available. This approach allows for leveraging both 
labeled and unlabeled data to enhance the training process 
and improve the performance of the model (equation 5):
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where α is a weighting parameter that controls the strength 
of the supervised term, and g denotes ground truth. Setting 
a small value for α in the network training prioritizes the 
characterization of intensity distributions rather than relying 
heavily on the ground truth of the annotated training dataset. 
This approach allows the network to learn and capture the 
underlying patterns and variations in the intensity distribu-
tions present in the data, leading to a more robust and flex-
ible model.

Semi‑supervised learning based on Mumford‑Shah 
approach

Kim et  al. [44] proposed a semi-supervised learning 
approach by combining Mumford-Shah (MS) loss and cross 
entropy (CE) loss. The MS loss was utilized as the unsuper-
vised loss, while the CE loss served as the supervised loss in 
their framework. In this work, we explored the use of Dice 
loss as an alternative supervised term in the semi-supervised 
learning approach (equation 6):

The combination of CE and Dice for the supervised part 
of the loss function was also explored in a recent study by 
our team [56].

Semi‑supervised learning based on Fuzzy clustering 
approach

Incorporating a supervised loss function based on the 
FCM objective function, such as Label-based FCM [45]) 
allows for the design of a semi-supervised loss function 
that accounts for the inherent fuzziness in FCM classifica-
tion. This addresses the incompatibility between Dice loss 
or cross-entropy and the fuzzy nature of FCM, enabling the 
development of a more comprehensive and effective loss 
function for semi-supervised learning (equation 7):

where gjk represents the ground truth label at location j for 
kth class, while �k denotes the class mean computed within 
the ground truth image g and can be defined as a constant 
( �k = 1 ). The degree of fuzzy overlap between the softmax 
channels is controlled by the parameter q in equation 8:
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Supervised learning

When employing deep neural networks for supervised 
segmentation, common choices for loss functions include 
cross-entropy loss, Dice loss, or a combination of the two. 
The variations in segmentation performance observed with 
different loss functions emphasize the importance of select-
ing an appropriate loss function, as it directly impacts the 
robustness and convergence of the segmentation model [57].

Loss functions used for medical image segmentation can 
be classified into three main categories: distribution-based 
losses (e.g., cross-entropy, Focal loss [58]), region-based 
losses (e.g., Dice coefficient), and boundary-based losses 
[44, 59] (e.g., MS). Additionally, combinations of these loss 
functions are often employed. Studies have indicated that the 
best performance is typically achieved with combined loss 
functions, such as the summation of cross-entropy and Dice 
similarity or the combination of Focal and Dice loss, known 
as the Unified Focal loss [60].

Training strategies

In total we conducted our study on 292 labeled PET images. 
We developed the segmentation model on 232 cases (includ-
ing 104 PMBCL cases from BCC center and 188 DLBCL 
cases from SM and BCC centers) and experimented with the 
supervision level for training on the 232 cases. As depicted 
in the first 5 rows of Table 2, all 232 cases were utilized for 
both supervised and unsupervised training approaches, with 
and without consideration of their corresponding labels, 
respectively. For semi-supervised training, we used the 60 
annotated cases and considered the remaining 172 cases as 
unannotated. For all the above-mentioned training strategies, 
60 cases from SM center were considered as the external 
test set. In the annotated set in the above mentioned semi-
supervised training approaches, we utilized the same number 
of cases from our three study cohorts (20 PMBCL cases 
from BCC, 20 DLBCL cases from BCC, and 20 DLBCL 
cases from SM).

To evaluate the effect of domain shift and the amount 
of performance drop due to generalizability of the trained 
model, we ran another training strategy for semi-supervised 
approaches (experiment II versus the above-mentioned strat-
egy that we can consider it as experiment I now). In this 
experiment, we conducted two semi-supervised approaches 
including the training and external testing on 122 DLBCL 
case (42 cases from SM center and 80 cases from BCC). 
We considered only 30 annotated cases (10 from SM and 20 
from BCC) and applied the trained semi-supervised model 
to 30 cases from BCC center as the external test set.
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Quantitative evaluation and statistical analysis

We evaluated the segmentation performance based on Dice 
similarity coefficient (DSC), formulated as follows, based 
on the number of true positives (TP), false positives (FP), 
false negatives (FN), and true negatives (FN) (equation 9):

Following the recommended RELAINCE guideline 
framework for AI-based algorithm evaluation [31], it is 
important to assess the segmentation technique using the 
figure of merit specific to this segmentation task; i.e. TMTV 
quantification and radiomics analysis as aligned with the ulti-
mate goals of segmentation. Besides TMTV, we computed 
PET metrics that are clinically relevant, such as SUVmax, 
SUVmean, and SUVmedian. Additionally, we extracted 
first-order (FO) radiomics features, including percentiles 
(10th and 90th), energy, interquartile range, kurtosis, mean 
absolute deviation, range, robust mean absolute deviation, 
root mean squared, total energy, and variance. These feature 

(9)DSC =
2 × TP

(TP + FP) + (TP + FN)

extractions were carried out following the image biomarker 
standardization initiative, utilizing LIFEx [61].

To evaluate the performance, we calculated the mean rela-
tive error compared to manual segmentation, employing Rel-
ative error (%) = ((predicted mask − ground truth)/(ground 
truth)) × 100. We also considered the absolute and relative 
error for TMTV prediction by the suggested approaches. We 
compared the different approaches using Wilcoxon signed 
rank test (a non-parametric statistical hypothesis test), and 
reported the mean ± SD and 95% confidence interval (CI) 
for the quantitative metrics. Furthermore, we benchmarked 
our approaches with varying levels of supervision against 
state-of-the-art segmentation techniques for lymphoma. 
Additionally, we applied our approaches to the publicly 
available dataset (autoPET [62, 67 and 68]).

Results

Qualitative analysis

For visual inspection and qualitative analysis of the segmen-
tation results, Fig. 2 illustrates the 2D axial views of lesion 

Table 2  Summary of quantitative image segmentation performance metrics (Mean ± SD)

Best performances in supervised, unsupervised, as well as MS + Dice and RFCM + FCM semi-supervised methods are shown in bold. For all 
the semi-supervised (MS + Dice) approaches η =  10−6 was selected and for all the Semi-supervised (RFCM + FCM) approaches, β = 0.0016 was 
selected. Also for semi-supervised (RFCM + FCM) approaches, q = 2 was selected (TMTV: Total Metabolic Tumor Volume, DSC: Dice similar-
ity coefficient)

Methods Training External test (n = 60)

#annotated # unannotated Hyper-parameters DSC Relative 
error of 
TMTV

Absolute error (mL)

Supervised (Unified Focal) 232 0 λ = 0.5, δ = 0.6, γ = 0.5 0.73 ± 0.11 0.34 ± 0.23 134.36 ± 170.38
Supervised (Dice) – 0.67 ± 0.10 0.31 ± 0.21 135.820 ± 189.28
Supervised (FCM) q = 2 0.71 ± 0.01 0.32 ± 0.21 132.33 ± 165.83
Unsupervised (MS) 0 232 � =  10–6 0.28 ± 0.04 0.60 ± 0.15 346.19 ± 441.31
Unsupervised (RFCM) q = 2, β = 0.0016 0.41 ± 0.06 0.41 ± 0.22 251.23 ± 351.85
Semi-supervised (MS + Dice) 60 172 α = 0.1 0.52 ± 0.08 0.32 ± 0.21 187.61 ± 276.59

α = 0.2 0. 59 ± 0.09 0.30 ± 0.19 156.63 ± 223.85
α = 0.3 0.53 ± 0.08 0.31 ± 0.21 181.71 ± 266.11
α = 0.4 0.53 ± 0.09 0.31 ± 0.21 172.68 ± 255.24
α = 0.5 0.51 ± 0.08 0.32 ± 0.21 190.79 ± 281.34
α = 0.6 0.39 ± 0.06 0.43 ± 0.22 259.43 ± 359.24
α = 0.7 0.34 ± 0.05 0.50 ± 0.19 297.29 ± 395.72

Semi-supervised (RFCM + FCM) α = 0.1 0.39 ± 0.06 0.43 ± 0.22 260.03 ± 361.73
α = 0.2 0.60 ± 0.09 0.31 ± 0.22 153.11 ± 218.53
α = 0.3 0.68 ± 0.10 0.30 ± 0.19 131.15 ± 184.15
α = 0.4 0.65 ± 0.01 0.31 ± 0.20 140.62 ± 196.70
α = 0.5 0.64 ± 0.01 0.31 ± 0.19 143.32 ± 200.06
α = 0.6 0.59 ± 0.09 0.30 ± 0.20 158.48 ± 227.29
α = 0.7 0.58 ± 0.09 0.30 ± 0.20 158.85 ± 230.05
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segmentation results of a patient from the external test set 
(SK) along with their zoomed version. As it is shown in this 
example, the predicted segmentation mask by the different 
supervised approaches are in good agreement with manual 
segmentations of lymphoma lesions presenting with different 
sizes, locations, textures, and contrast. The semi-supervised 
approach based on FCM, i.e., RFCM + αFCM, shows better 
qualitative and quantitative performance than MS + αDice. 
Also, Fig. 3 shows the segmented lesions of the patient by 
the same segmentation model with different levels of super-
vision; false positive regions segmented by unsupervised 
and semi-supervised (MS + αDice) approaches are shown in 

this figure. However, unsupervised methods based on RFCM 
and MS losses cannot capture the lesion area correctly.

Figure  4 shows a few representative outliers seg-
mented by our techniques to show the wrong predicted 
areas by our technique. In these examples, the investigated 
approaches with various levels of supervision failed to 
properly segment the lymphoma lesions. This figure illus-
trates how false positives (left) and missed lesions (right) 
were caused by the low uptake of lesions (right) and high 
uptake in the background (left). The presence of nearby 
tissues with a relatively high uptake that could be mistaken 
for the tumor is another factor that can cause errors in the 
model predictions (see Fig. 4).

Fig. 2  Segmentation results achieved by the different levels of super-
vision in supervised and semi-supervised approaches. a A coro-
nal view of a DLBCL patient, b is the axial view of the segmented 
lesions and c is the zoomed area of the segmented lesions. Visual 

inspection of compassion between the segmentation approaches with 
different supervision levels. Segmentation models with any supervi-
sion level could not segment the small lesion (blue arrow)

Fig. 3  Segmentation results on the coronal view achieved by the different levels of supervision in unsupervised, supervised and semi-supervised 
AI approaches for segmentation along with the conventional segmentation based on RFCM. (RFCM: Robust FCM)
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In Fig. 5, we visualize the probability map predictions 
obtained from our network using a semi-supervised learn-
ing approach. These predictions are generated through the 
utilization of FCM losses (RFCM + αFCM), and they are 
superimposed on the axial slice of a PET scan. Four cases 
of different probability threshold settings are displayed. 
The range of probability maps is shown on the image for 
each cluster.

Quantitative analysis

We compared our FCM-based methodologies under different 
levels of supervision, employing supervised Unified focal 
and Dice losses, unsupervised MS loss (Kim et al. [44]) and 
semi-supervised MS + Dice loss (Table 2). For the quantita-
tive analysis of our suggested approaches, the segmentation 
performance of the techniques in terms of Dice score with 
different supervision level are presented in Table 2. Figure 6 
compares the Dice coefficients of the various networks to 
demonstrate the significance of the differences using the 
signed ranked test, where a p value < 0.001 is regarded as 
significant. The supervised approach with Unified focal loss 
function yielded the highest Dice score [mean ± standard 
deviation (SD)] of 0.73 ± 0.11; 95% CI 0.67–0.8) compared 
to Dice loss (p value < 0.01). There is no significant differ-
ence between the segmentation performance of supervised 
Unified focal and FCM losses. Supervised approach with 
FCM provided the performance with Dice score of (0.71 ± 
0.01; 95% CI 0.62–0.81). The semi-supervised approach by 
RFCM and FCM loss with α = 0.3 showed the best perfor-
mance among the semi-supervised approaches with Dice 
score (0.68 ± 0.10; 95% CI 0.45–0.77) (p value < 0.01). 
The best performer among MS + αDice semi-supervised 
approaches with α = 0.2 showed Dice score of (0.59 ± 
0.09; 95% CI 0.44–0.76) (p < 0.01). It was observed that 

the unsupervised approach with MS loss showed the lowest 
performance. With the exception of few non-significant dif-
ferences, as shown in Fig. 6, most differences are significant 
and are shown in blue.

Table 2 also summarizes the performance of unsuper-
vised, semi-supervised, and supervised approaches based 
on the absolute error and relative error for TMTV predic-
tion. The minimum relative error and the minimum absolute 
error for the supervised techniques are respectively related 
to the supervised with Dice loss) and supervised with FCM 
loss, but their differences are not statistically significant 
(p value > 0.01). The lower absolute and relative error 
among the unsupervised approaches are related to unsuper-
vised segmentation with RFCM loss (p value < 0.01) that 
is also aligned with the performance of the unsupervised 
approaches in terms of DSC. MS + αDice semi-supervised 
approach with α = 0.2 is also the best performer in terms 
of absolute and relative TMTV error (p value < 0.01). 
RFCM+FCM with α = 0.3 showed the lowest absolute and 
relative error.

For every segmented lesion, the results of the image-
derived PET metrics are shown in Fig. 7, along with first-
order and shape features percent relative error for various 
approaches with various levels of supervision and loss func-
tions. This reveals that if the lesion is segmented by vary-
ing levels of supervision and losses, the segmented region 
contains the maximum value of the lesion, and the relative 
error RE for  SUVmax is less than 1%. In any case, it is seen 
that errors for unsupervised approach by MS loss are high. 
Unsupervised with RFCM and semi-supervised approaches 
with MS+αDice (α = 0.6 and 0.7) have higher relative errors 
in the SUV and FO based radiomics features compared to 
other techniques. The percent relative error of  SUVmean was 
less than 10% in techniques with some levels of supervision, 
including semi and supervised methods with both MS + 

Fig. 4  Axial views of ground truth and 3D U-net trained by different 
levels of supervision on different cases where failure was observed 
resulting in outliers. This figure visually demonstrates the impact of 

false positives (left) and missed lesions (right), attributing them to 
low uptake in lesions (right) and high uptake in the background (left)
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αDice and RFCM + αFCM losses. We also observe that with other radiomics features, errors are less than < 10–20%, with 

Fig. 5  Examples of the output of the semi-supervised 
(RFCM + FCM). Displayed on the axial view of slices extracted from 
the patient PET 3D volume in the dataset, we present outcome prob-
abilities. The ground truth tumor area is represented by the green line, 
while various colors indicate different tumor probability regions. Four 

customized output examples are showcased, demonstrating the impact 
of different probability threshold settings, as indicated by the color 
bars on the right side of the images. In (a) only the areas containing 
pixels with tumor probabilities above 0.4 are displayed, above 0.5 in 
(b), above 0.6 in (c) and above 0.7 in (d)

Fig. 6  Comparison of perfor-
mance of different supervision 
levels and loss functions (p 
values) in terms of Dice coef-
ficient (p value < 0.001 used 
as significant). For example 
we did not observe statistically 
significant differences between 
supervised approaches with 
Unified focal and FCM losses, 
semi-supervised (MS + αDice, 
α = 0.7) and unsupervised (MS), 
unsupervised (RFCM) and 
semi-supervised (MS + αDice, 
α = 0.7) approaches. The signifi-
cance of the different perfor-
mances of the semi-supervised 
approaches cannot be concluded 
amongst all α values
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the exception of FO-variance. In supervised and FCM-based 
semi-supervised approaches compared to unsupervised and 
MS-based semi-supervised techniques, the mean relative 
errors of SUV-based and FO-based features are relatively 
lower.

The correlation (Spearman) between the ground truth 
TMTV and the predicted TMTV with the best semi-super-
vised approaches, i.e. MS + Dice with α = 0.2 and RFCM + 
FCM with α = 0.3, were calculated for n = 60 external test 
cases (both correlations = 0.96, p < 0.0001) and are shown 
in Fig. 8a and b. The volume errors (absolute difference 

Fig. 7  Mean relative error percentage (MRE %) of radiomic features for the different levels of supervision and different loss functions
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between predicted and ground-truth TMTV) were calcu-
lated in 5 volume bins and their distribution are shown in 

(c) and (d). Additionally, the relative errors (absolute differ-
ence relative to ground-truth value) distribution in the same 

Fig. 8  The correlation between the ground truth total metabolic 
tumor volume (TMTV) and the predicted TMTV with the best 
semi-supervised approaches: a MS + Dice with α = 0.2 and b 
RFCM + FCM with α = 0.3. The volume errors (absolute difference 

between predicted and ground-truth TMTV) are shown in c and 
d respectively. The relative errors (absolute difference relative to 
ground-truth value) of two semi-supervised approaches are shown in 
e and f. (The n = 60 test cases)
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5 volume bins were calculated and shown in (e) and (f), 
respectively. The correlation analysis and the absolute and 
relative errors distributions for the supervised and unsuper-
vised approaches are shown in Figs. S1 and S2.

We  c o n s i d e r e d  t h e  i m p a c t  o f  α  i n 
L�
semi−FCM

(q = 2, � = 0.0016) and L�
semi−MS

(
� = 10−6

)
 on 

the performance of the lesion segmentation. As shown 
in Table 2, the performance of semi-supervised approach 
L�
semi−FCM

 (RFCM + αFCM) was consistently higher than 
L�
semi−MS

 (MS + αDice) for the different α values of (0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7) that we extensively examined 
in Fig. 9.

Comparison to state‑of‑the‑art techniques

We employed state-of-the-art approaches at various lev-
els of supervision on our external test dataset. The train-
ing was also conducted on our training dataset, utilizing 
the same data splitting we used for our own approaches. 

Additionally, we leveraged the trained model shared by 
Blanch-Durand et al. [63]. The results of these comparisons 
are presented in Table 3. For comparison with unsupervised 
approaches, we applied the unsupervised method by Kim 
et al. [44], which utilizes the Mumford-Shah loss function, 
into Table 2. To align with state-of-the-art methods shar-
ing a similar spirit, we have now included their suggested 
unsupervised approach with an MS + cross-entropy loss 
function (Table 3). Furthermore, for a holistic evaluation, 
we incorporated the FCM approach, a conventional unsu-
pervised segmentation method, given that our approaches 
are inspired by FCM.

Discussion

Accurate tumor segmentation in PET images faces several 
challenges, encompassing issues such as limited spatial reso-
lution, blurred boundaries due to the partial volume effect 
[64] leading to underestimated activity in small lesions 
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Experiment I

Experiment II

Fig. 9  The effect of supervision level by changing α on the segmentation performance (Dice score) in two semi-supervised approaches: 
RFCM + αFCM and MS + αDice for experiment I and II

Table 3  Comparison of the supervised approach with state-of-the-art (SOTA) approaches

Approach Supervision level SOTA approach Dice score trained 
model

Relative error of 
TMTV

Dice score 
training from 
the scratch

Relative 
error of 
TMTV

AI Supervised Blanch-Durand et al. 
[63]

0.36 ± 0.14 0.78 ± 1.01 0.47 ± 0.20 0.56 ± 0.90

AI Semi-supervised 
(MS + Cross-
Entropy loss)

Kim et al. [44] Trained model is Not 
shared

Trained model is Not 
shared

0.34 ± 0.18 0.82 ± 1.81

Conventional Un-supervised FCM – – No training 
(0.24 ± 0.11)

0.61 ± 1.26
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[30]. The diverse characteristics of lesions further compli-
cate segmentation, especially in lymphoma patients with 
heavy disease burdens. Conventional voxel classification 
methods encounter difficulties with the fuzzy boundaries 
of tumors, prompting the exploration of fuzzy clustering 
techniques like FCM. However, their application is hin-
dered by time-consuming processes and the need for user 
interaction. The development of an automated segmentation 
approach requires addressing ground truth inconsistencies 
arising from inter- and intra-observer variabilities and the 
lack of standardized segmentation approaches. Additionally, 
addressing the domain shift between the training dataset and 
real-world scenarios is crucial for achieving generalization 
in AI models.

In this study, we applied two semi-supervised approaches 
for tumor segmentation in PET scans. Semi-supervised 
learning approaches were implemented, integrating two loss 
functions designed for unsupervised learning based on the 
FCM cost function and Mumford-Shah formulation. In addi-
tion to their inherent noise-suppressing capabilities [65] and 
higher accuracy for tumor segmentation tasks [30], CNNs 
have much shorter prediction times than traditional segmen-
tation methods like FCM. The FCM loss function is well-
suited for training deep networks in tumor segmentation due 
to its ability to incorporate the classical FCM objective func-
tion, which allows for consideration of fuzzy edges without 
the need for supervision. Previous studies have demonstrated 
the effectiveness of the FCM loss in tumor segmentation, 
particularly in SPECT/CT images [45]. The fuzzy clustering 
loss function can serve as both a supervised and unsuper-
vised loss function, depending on how the desired output 
is defined within the loss and with adaptive modifications 
made to the training process.

In Fig. 5, we present the probability map predictions 
generated by our network using a semi-supervised learn-
ing approach with Fuzzy C-means (FCM) losses (RFCM + 
αFCM). These predictions are overlaid on the axial slice of a 
PET scan. Increasing the probability percentage shrinks the 
predicted area from around to the inside of the tumor. The 
parameter α allows us to regulate the degree of supervision 
in semi-supervised approaches. For small value of α, train-
ing the network is focused on intensity distribution charac-
teristics of the image rather than the ground truth labels of 
annotated training data. We showed that combined unsu-
pervised RFCM and supervised FCM (RFCM + αFCM), 
performed better compared to integration of unsupervised 
MS loss and supervised Dice loss (MS + αDice). RFCM + 
αFCM with α = 0.3 showed the best performance compared 
to the semi-supervised approach based on MS loss (p value 
< 0.01) with the percent relative error (RE%) of  SUVmax 
quantification less than 1% (Fig. 7). Table 2 provides a com-
prehensive summary of unsupervised, semi-supervised, 
and supervised approaches, showcasing their performance 

in TMTV prediction through absolute and relative error 
metrics. Notably, the supervised techniques and the best 
performer of semi-supervised approaches in terms of DSC, 
exhibited minimal relative and absolute errors.

As Fig. 9 shows, in experiment II, training and test data 
are from DLBCL cases. Besides the training data was 
mainly composed of data from BCC center. By increas-
ing α (from α = 0.1 to α=0.7) the impact of supervised 
loss was increased and the segmentation performance on 
test data (also from BCC) improved. In experiment I, the 
reduction in performance when we increase α (Fig. 9), 
can be explained by “domain shift”. As the weight of the 
supervised term grows, more domain shift issues arise in 
the model; since the model was trained on data that were 
mostly from BCC center and the supervised learning does 
not generalize well on test data from SM. In other words, 
since most of the data used for training and testing are not 
drawn from the same distribution (center), increasing the 
weight of the supervised term decreases the segmenta-
tion performance. The performance drop in experiment I 
was higher in MS based semi-supervised approach (MS 
+ αDice) compared to FCM based (RFCM + α FCM). 
Experiment I is close to the real-world scenario that we 
mainly apply trained models on unseen data from exter-
nal centers. While, in the case of having test data from a 
center with limited contribution to training data, the seg-
mentation performance was decreased due to domain shift 
phenomena.

Table 3 presents a comparison with state-of-the-art super-
vised approaches. The results indicate that domain shifts 
adversely impact the performance of the trained model, 
and starting training from scratch does not yield improved 
results compared to those reported in the original study but 
it was the best performer among state-of-the-art techniques 
(Table 3). We also compared our results with those obtained 
from unsupervised/semi-supervised methodologies utilizing 
Mumford-Shah loss, as well as conventional techniques such 
as FCM (Tables 2, 3). Achieving a fair comparison with 
conventional techniques necessitates the inclusion of pre/
post-processing steps [66].

We also applied the trained supervised, semi-supervised 
and unsupervised models to the lymphoma cases of the 
benchmark dataset of autoPET which is publicly available 
[6–8] and the results are provided in the supplementary 
material (Table S1). The results showed the performance 
to drop (due to the domain shift) for models with different 
supervision levels. The best performer was supervised (uni-
fied focal loss), unsupervised (RFCM loss) that are simi-
lar to the results of our external test set. However, for the 
semi-supervised approaches, the best performers are with 
different supervision levels compared to our external test 
dataset: (MS + Dice) with α = 0.4 and (RFCM + FCM) 
with q = 2 and α = 0.2 in terms of both dice and relative 
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error of TMTV, but their differences were not significant in 
terms of TMTV relative error (p value > 0.01).The limita-
tions in this study include the small size of the lymphoma 
lesions in two of our cohorts (DLBCL and PMBCL from 
BC Cancer) that constitute difficult cases for segmentation 
task. These cohorts include scans for limited stage (< III) 
and interim scans that mostly include small size lymphoma 
lesions. In addition, some of the labeled cases from the SM 
center were segmented by thresholding techniques (40%), 
and this could increase ground truth inconsistencies, and 
as such, we removed them from this study, and they are not 
included in the dataset in Table 1.

In summary, our investigation thoroughly explores the 
valuable prospect of harnessing unsupervised and semi-
supervised approaches in the context of widely avail-
able but unlabeled PET data. We considered the potential 
of semi-supervised methods as a robust alternative when 
dealing with a scarcity of annotated data or ground truth 
inconsistencies. The study underscores the efficacy of a loss 
function within a semi-supervised framework, particularly 
in scenarios where both unsupervised and supervised com-
ponents target the same category, such as region, boundary, 
or distribution. Notably, our findings demonstrate that the 
semi-supervised learning paradigm, specifically employ-
ing FCM loss (RFCM + αFCM), outperforms supervised 
approaches trained on a limited set of labeled data in terms 
of both Dice score and the relative error in TMTV predic-
tion. This highlights the promising role of semi-supervised 
methods in addressing challenges associated with manual 
delineations, observer variability, and inconsistent ground 
truth annotations. In essence, our study illuminates the 
potential of semi-supervised approaches to revolutionize 
and streamline segmentation workflows in medical imaging, 
offering a more efficient and reliable avenue for lymphoma 
lesion characterization.

Conclusion

Given the wide availability of unlabeled PET data, it is pos-
sible to leverage the need for high-quality annotated data 
using unsupervised or semi-supervised approaches. To 
this end, we evaluated two semi-supervised approaches for 
3D segmentation of lymphoma lesions. Our study showed 
that a semi-supervised approach with a well-designed loss 
function could be a great alternative when having access 
to only a limited amount of annotated data or when having 
ground truth inconsistencies. Specifically, a semi-supervised 
method that combines an unsupervised loss function with a 
supervised loss from the same category (region, boundary, 
or distribution) can achieve promising results. Compared 
to supervised approaches trained on a smaller amount of 

labeled data, semi-supervised learning via FCM loss (RFCM 
+ αFCM) demonstrated improved performance in terms of 
Dice and TMTV prediction as well as a number of radiom-
ics features (FO and shape features). We showed the level of 
supervision and the choice of loss function affect the accu-
racy of lesion segmentation and subsequent analysis of PET 
metrics and radiomics features. Semi-supervised methods 
hold great promise for automating segmentation workflows, 
addressing the challenges posed by time-consuming manual 
delineations performed by experts and the inherent variabil-
ity among observers, which often lead to inconsistent ground 
truth annotations.
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