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KEY POINTS

� In patients with head and neck (HN) tumors, FDG PET/MR imaging shows a similar performance as
PET/CT in terms of image quality, fusion quality, lesion conspicuity, anatomic location, and number
of detected lesions.

� Studies investigating the T and N staging accuracy of PET/MR imaging compared with PET/CT in
HN squamous cell carcinoma (HNSCC) have yielded conflicting results, nevertheless with a trend
toward improved assessment of locoregional spread with PET/MR imaging. As most studies
were based on small patient samples, larger studies are necessary to firmly establish the role of
PET/MR imaging in this clinical setting.

� FDG PET/diffusion-weighted imaging (DWI) MR imaging with precisely defined diagnostic criteria
including T2 signal and DWI characteristics yields excellent results for the detection of residual/
recurrent HNSCC after radiotherapy with an excellent agreement between imaging-based and
pathologic T stage.

� FDG PET/MR imaging has an excellent and similar diagnostic performance as FDG PET/CT for de-
tecting distant metastases and distant second primary cancers in HNSCC patients; distant malig-
nant lesions occur more often in the posttreatment surveillance group than in patients imaged for
primary tumor staging.
INTRODUCTION combining these modalities, PET/MR imaging
The rationale behind the integration of PET and
MR imaging lies in the complementary strengths
of each modality. PET provides metabolic informa-
tion using radiotracers, whereas MR imaging of-
fers detailed anatomic imaging with excellent soft
tissue contrast, as well as functional information
based on diffusion-weighted imaging (DWI), dy-
namic contrast-enhanced (DCE) perfusion imag-
ing and magnetic resonance spectroscopy. By
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can offer a comprehensive and synergistic qualita-
tive and quantitative approach to better charac-
terize tumors.

When hybrid PET/MR imaging technology was
introduced in academic centers over a decade
ago, the radiologic and nuclear medicine commu-
nity had high expectations for oncologic head and
neck (HN) imaging in terms of tumor characteriza-
tion, localization and staging, detection of lymph
nodes, distant metastases and recurrent disease,
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and tumor segmentation for radiotherapy plan-
ning.1,2 Furthermore, imaging biomarkers
extracted from PET/MR imaging, such as the
apparent diffusion coefficient (ADC), maximum
and mean standardized uptake values (SUVmax,
SUVmean), total lesion glycolysis (TLG), and
vascular permeability constants (eg, volume trans-
fer constant, Ktrans), were shown to correlate with
tumor grade and stage,3,4 and in combination
with clinical risk factors—they can predict the sur-
vival of HNSCC patients thus outperforming the
traditional tumor node metastasis (TNM) system.5

Even if hybrid PET/MR imaging equipment is
today not aswidely available as stand-aloneMR im-
agingandPET/CTtechnology, the researchoncom-
bined PET and MR imaging information including
DWI or perfusion imaging has led to an increasing
understanding of HN cancer biology and to an
improved diagnosis in challenging areas, for
example, posttreatment evaluation.6,7 Furthermore,
combined PET and MR imaging information—
whether derived from hybrid PET/MR imaging sys-
tems or from standalone MR imaging and PET/CT
technology—is complementary andpitfalls of image
interpretation can thus be avoided.6–8 MR imaging
can help to avoid FDG PET/CT pitfalls related to
high physiologic FDG uptake of normal structures
(eg, muscles, salivary glands) and it can also detect
lesions with low FDG uptake (hypometabolic
tumors, necrotic lymph nodes, or tumors located
in vicinity of areaswith highFDGmetabolism),which
can bemissed onPET/CT8 (Fig. 1). Vice versa, PET/
CT can facilitate the detection of metastatic neck
nodes and it can reveal neck carcinoma of unknown
primary (NCUP), a more challenging task at MR im-
aging9,10 (Fig. 2).
The primary aim of this review is to critically

summarize the current literature on PET/MR imag-
ing in HN cancer and to offer the interested reader
a comprehensive appraisal of what has been
achieved during the past decade while at the
same timeproviding an outlook on future directions
in the implementation and clinical use of multipara-
metric PET/MR imaging. The focus of this article is
on HN squamous cell carcinoma (HNSCC).
HEAD AND NECK SQUAMOUS CELL
CARCINOMA: IMAGING INDICATIONS AND
PET/MR IMAGING PROTOCOLS

Squamous cell carcinoma (SCC) is the most com-
mon malignant tumor originating in the HN. It is the
sixth most common tumor worldwide and its inci-
dence is increasing with an anticipated rise by
30% by 2030.11 Despite ongoing advances in
radiotherapy, surgery, chemotherapy and immu-
notherapy, 5-year survival rates remain under
50%.12 HNSCC arises either from the mucosal lin-
ing of the upper aerodigestive tract or from the
skin. Tobacco and alcohol consumption are typi-
cally associated with SCC of the oral cavity, larynx,
and hypopharynx.11,13 In contrast, infection with
the human papilloma virus (HPV)—mainly HPV-
16—is typically associated with SCC of the
oropharynx, whereas infection with the Epstein–
Barr virus (EBV) is an important etiologic factor in
SCC of the nasopharynx.11 Finally, exposure to ul-
traviolet light plays an important role in the etiology
of SCC of the skin and lip.
Staging of primary HNSCC of the upper

aerodigestive tract includes clinical examination,
panendoscopy, and cross-sectional imaging.
Contrast-enhanced CT and MR imaging are the
most commonly used cross-sectional imagingmo-
dalities to assess locoregional disease, and CT is
also used to detect distant metastases or second
primary tumors. Whether contrast-enhanced PET/
CT should be used routinely for the initial HNSCC
staging is still a matter of debate. However, in
most institutions, PET/CT is recommended for the
initial staging of locally advancedHNSCC (because
of an increased risk of distant metastases) and in
NCUP. Furthermore, PET/CT is also recommended
for radiotherapy planning (see below).
For the follow-up of HNSCC patients, although

PET/CT is routinely used in the posttreatment
setting in different institutions, many institutions
prefer MR imaging or CT for the locoregional
assessment and an additional CT for the evalua-
tion of the chest, whereas other institutions prefer
to combine MR imaging and PET/CT or—if avail-
able—they perform PET/MR imaging. Irrespective
of the imaging modality used, a baseline posttreat-
ment surveillance study is carried out at 12 weeks
after treatment, after which surveillance is done
depending on local preferences given the paucity
of literature demonstrating a clear benefit from sur-
veillance imaging beyond the baseline posttreat-
ment examination in asymptomatic patients.14

However, in patients with a history of smoking,
lung screening with chest CT is usually carried
out during the first 2 to 5 years after treatment.
In clinical practice, most patients with HNSCC

imaged with PET/MR imaging are selected by
needing a dedicated HN MR imaging examination
as well as whole body staging with PET.15

Imaging protocols for MR imaging and PET/MR
imaging vary significantly from one institution to
another. Nevertheless, a dedicated MR imaging
examination of the HN region should include
T1W, T2W, contrast-enhanced T1W sequences
and a DWI acquisition. Some authors use fat-
saturated T2W and fat-saturated post-contrast
T1W images, whereas others do not recommend
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Fig. 1. (A) Axial PET/CT image shows asymmetric uptake behind the nasopharynx (arrowhead) and expected high
uptake in the explored hindbrain. A lytic lesion in the clivus with well-defined sclerotic borders and without FDG
uptake is also detected (arrow). The remaining of the total body PET/CT was normal. FDG uptake in the left
longus colli muscle (arrowhead) was interpreted as physiologic. (B) Corresponding axial contrast-enhanced T1-
weighted MR image obtained in the same patient illustrates an infiltrative, poorly delineated tumor invading
the clivus, the right jugular fossa, the right petrous apex, and the brainstem (arrows), not revealed by PET/CT. Sub-
sequent biopsy of the clivus, intracranially and of the nasopharynx showed a primary adenocarcinoma of the skull
base. The increased FDG uptake in the left nasopharynx seen in A corresponds to tumor invasion of the longus
colli muscle. Owing to intratumoral areas with variable FDG avidity and tumor vicinity to the highly metabolic
brain parenchyma, this lesion is less well depicted by PET/CT than MR imaging. (Reproduced from Purohit et al.8)
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fat saturation.13,16 An additional DCE perfusion im-
aging sequence is not recommended in clinical
routine mainly because of a lack of consensus
regarding relevant quantitative parameters.

PET/MR imaging examinations take longer than
PET/CT examinations. Therefore, due to costs
Fig. 2. Unknown primary cancer detected on PET/MR imag
metastasis (arrow) in a 63-year-old man. Ultrasonography
positive squamous cell carcinoma (SCC). (B) Correspondin
fat-saturated T1W contrast-enhanced image obtained at
equally well seen in (A, B) and (C). The small base of the t
rows). Note, however, improved lesion conspicuity on P
confirmed HPV-positive SCC.
constraints and limited patient cooperation,
different PET/MR imaging protocols for patients
with HN cancer have been proposed; these proto-
cols reflect institutional preferences for sequences
and imaging planes.17–19 Nevertheless, most in-
vestigators have proposed the sole acquisition of
ing. (A) T2W image shows a large level II lymph node
-guided fine needle aspiration cytology revealed p16
g b1000 image from DWI. (C) FDG PET fused with the
the same level. The metastatic lymph node (arrows) is
ongue tumor is detected on DWI and PET (dashed ar-
ET due to increased FDG uptake. Endoscopic biopsy-
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anatomic MR imaging sequences,17,20–23 which
can be used for PET attenuation correction
and orientation (typically a Dixon-type T1W
sequence � intravenous (IV) contrast and a T2W
sequence � fat saturation in the HN and a Dixon-
type T1W sequence or a periodically rotating over-
lapping parallel lines with enhanced reconstruction
(PROPELLER) type sequence for the lung and
abdomen), whereas only aminority of investigators
has proposed a full diagnostic HNMR imaging pro-
tocol including DWI � DCE perfusion imaging fol-
lowed by anatomic MR imaging sequences for
the chest, abdomen, and pelvis.6,18,24 Using the
MR imaging part of PET/MR imaging mainly for
anatomic imaging makes sense given the superior
soft tissuediscrimination ofMR imaging in compar-
ison to CT, especially in the HN. However, if MR im-
aging is only employed for anatomic orientation,
the full potential of PET/MR imaging is not used.25

DETECTION OF FOCAL LESIONS AND
QUANTIFICATION ON PET/MR IMAGING

Most early publications on PET/MR imaging in HN
cancer have focused on lesion detection and
quantification in comparison to PET/CT.19,26–29

Based on these publications, the following conclu-
sions can be drawn.

� In patients with HN tumors, PET/MR imaging
shows a similar performance to PET/CT in
terms of image quality, fusion quality, lesion
conspicuity or anatomic location, number of
detected lesions, and number of patients
with and without malignant lesions.

� There is an excellent correlation for SUV mea-
surements on both modalities, nevertheless
SUVs measured in malignant lesions, benign
lesions, and organs on PET/MR imaging are
underestimated compared with PET/CT.

� Differences in SUVs can be partly attributed to
what kind of MR imaging-based attenuation
correction map was used and partly to tracer
kinetics, as PET/MR imaging and PET/CT
were performed sequentially after administra-
tion of a single [18F] Fluorodeoxyglucose
dose.

� Intra- and interobserver agreement for ADC
and SUV measurements is very good.

CORRELATION BETWEEN PET/MR
IMAGING-DERIVED BIOMARKERS

HNSCC typically have an increased FDG uptake,
which reflects their increased glucose metabolism
and they display restricted diffusivity at DWI, which
corresponds to increased cellularity, lower ADC
values depicting higher tumor cellularity. ADC
values show a significant correlation with tumor
differentiation, a higher grade tumor showing
more restriction than a lower grade tumor.30,31

Several investigators have evaluated the correla-
tionbetweenquantitative FDGPETparameters and
ADCvalues to find outwhether there is a correlation
between metabolic tumor activity (SUVmax,
SUVmean, TLG) and tumor cellularity (ADC values).
Based on studies including 35 to 71 HNSCC pa-
tients, most investigators found that quantitative
FDG uptake parameters were not significantly
correlated with ADC values; therefore, the two
parameters are most likely independent imaging
biomarkers with the potential to provide comple-
mentary information on microstructural character-
istics and biological behavior of HNSCC.30–36

Nevertheless, Nakajo and colleagues reported a
significant inverse correlation between SUV and
ADC values in a series of 26 HNSCC patients.37

Likewise, Han and colleagues reported a significant
inverse correlation between ADCmin and TLG in 34
patients. However, the reported correlations were
moderate to low with correlation coefficients vary-
ing between �0.56 and �0.35, respectively.37,38

Moreover, several investigators have reported sig-
nificant correlations between perfusion parameters
(Ktrans, Kep, Ve) and PET parameters on the one
hand, and between perfusion parameters and DWI
parameters on the other hand.3,31,38

In conclusion, the relationships between DWI,
FDG PET and DCE perfusion parameters rather
suggest complex interactions and the reported
data cannot be considered as evident with the
exception of a most likely absent correlation be-
tween metabolism and cellularity in HNSCC.
Nevertheless, if we expect to apply deep learning
(DL) models for precise tumor segmentation and
evaluation of prognostic factors further studies
on larger patient cohorts are mandatory.
STAGING OF PRIMARY HEAD AND NECK
SQUAMOUS CELL CARCINOMA
Local Tumor Evaluation (T Staging)

In primary HNSCC, tumor size, thickness and
depth of invasion are directly correlated with tumor
aggressiveness.12 Correctly evaluating deep tu-
mor spread and T stage in HNSCC has direct im-
plications for treatment planning and prognosis.
Both primary and recurrent HNSCC have char-

acteristic PET/DWI MR imaging features, which
include an intermediate signal intensity on T1W,
T2W, or fat-saturated T2W sequences, moderate
enhancement after intravenous (IV) administration
of contrast material, restricted diffusivity with
ADC values less than 1.2 to 1.3 � 10�3 mm2/s,
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and increased FDG uptake with SUVmax values
usually greater than 3 (Fig. 3).

To validate PET/MR imaging findings, correla-
tion with cross-sectional whole-organ histologic
slices is the ideal approach (Fig. 4). However,
this is quite difficult to achieve in a busy clinical
setting and because many patients do not un-
dergo surgery. Most studies evaluating the diag-
nostic performance of FDG PET/MR imaging for
local tumor staging of primary HNSCC are based
on small sample sizes.39–41 Moreover, not all au-
thors precisely specify the standard of reference,
and functional MR imaging sequences were not
used. Also, some studies compared PET/MR im-
aging with PET/CT results, whereas other studies
lacked comparative data with PET/CT.

Among these studies, Schaarschmidt and col-
leagues found no significant difference in T and N
staging among PET/MR imaging, PET/CT, and
MR imaging alone in 12 patients with primary
HNSCC, histopathology of the resected tumors
Fig. 3. Characteristic PET/DWIMR imaging features of an a
age. (B) Contrast-enhanced T1W image. (C) ADC map from
(large asterisks) with an intermediate signal intensity on
contrast-material and restricted diffusion (ADC 5 0.86 �
base invasion reaching the right carotid canal (arrows). Blu
air cells. Small asterisks indicate fluid retention in the sph
serving as the standard of reference.39 In a study
including 20 patients with hypopharyngeal SCC
(with histopathology of the surgical specimen in
11 patients), Huang and colleagues found that the
T staging accuracy of PET/MR imaging, PET/CT,
and MR imaging alone was similar, that is, 82%,
64%, and 73%, respectively.40 Sekine and col-
leagues compared the diagnostic accuracy of
PET/MR imaging and PET/CT for the initial staging
of 27 patients with newly diagnosed HNSCC and
reported a comparable TNM staging accuracy
with bothmodalities, although therewas a trend to-
ward higher sensitivity and specificity with PET/MR
imaging.41 In contrast, Samolyk-Kogaczewska and
colleagues reported a superior T staging accuracy
with PET/MR imaging in comparison toCT in 21pa-
tients with HNSCC.42 In a retrospective study
including 36 patients with oropharyngeal SCC,
Flygare and colleagues found no significant differ-
ences in T staging or in measurement of maximum
tumor diameter between PET/DWIMR imaging and
dvanced primary nasopharyngeal cancer. (A) T2W im-
DWI. (D) Fused PET and T2W image. Infiltrating tumor
T2W images, enhancement after IV administration of
10�3 mm2/s). High FDG uptake (SUVmax 5 11). Skull
e asterisks indicate fluid retention in the right mastoid
enoid sinus.



Fig. 4. Radiologic -pathologic correlation protocol enabling precise slice by slice correlation between MR imag-
ing, PET, and whole-organ serial histology. Contrast-enhanced T1W images: left column. Fused PET and contrast-
enhanced Dixon sequence: middle column. Whole-organ serial histology: right column. After surgical resection,
whole-organ slices are obtained parallel to the imaging plane every 3 mm. Selected slices are shown. Slice 4:
supraglottic larynx. Slice 6: glottic larynx. Slice 15: cervical trachea. In this figure with a bilateral transglottic
SCC of the larynx, there is invasion of the anterior (blue asterisks) and posterior commissure (dashed arrows), par-
aglottic space bilaterally and there is tumor spread into the strap muscles (arrows in slice 4 and 6). The tumor has
invaded the tracheoesophageal groove (red asterisks on slice 15). Metastatic lymph with extranodal spread is also
seen on the contrast-enhanced T1W image at the level of the trachea (arrow on slice 15). Note variation in SUV
values with locally higher values on slice 4 and 15.
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PET/CT; the standard of reference for the T stage
was, however, not specified.43 In the study of Fly-
gare and colleagues, the interobserver agreement
between two readers was higher for PET/DWIMR
imaging than for PET/CT. However, there was
only a weak agreement between PET/CT and
PET/DWIMR imaging for the T stage.43 In a pro-
spective study including 113 patients with naso-
pharyngeal carcinoma, Chan and colleagues
reported that PET/MR imaging was more accurate
than MR imaging and PET/CT for the staging of
nasopharyngeal cancer, however, the investigators
did not report any P values for pairwise compari-
sons; for the assessment of deep submucosal tu-
mor spread, MR imaging served as the standard
of reference.44 Kuhn and colleagues found slight
advantages of PET/MR imaging over PET/CT for
the local assessment of HNSCC, especially for in-
vasion of adjacent structures and PNS; however,
the standard of reference for deep tumor spread
was not specified.45 The investigators also re-
ported that tumors in theoral cavity andoropharynx
were more often affected by artifacts on PET/CT
(because of dental hardware), whereas tumors in
the hypopharynx and larynx were affected more
often by artifacts on PET/MR imaging (because of
breathing and swallowing) (Fig. 5). In a cohort of
35 patients with nasopharyngeal carcinoma,
Cheng and colleagues reported that T2W and
non-enhanced T1W PET/MR imaging were supe-
rior to PET/CT for the visualization of primary le-
sions due to higher lesion conspicuity.36

Other studies focused on the local assessment
of HNSCC and on whether MR imaging and/or
PET parameters could predict local tumor resect-
ability. Among these studies, Meerwein and
colleagues evaluated tumor fixation to the prever-
tebral space in 59 patients with advanced SCC of
the hypopharynx.46 Neoplastic invasion of the pre-
vertebral space renders a tumor unresectable;



Fig. 5. (A, B) FDG PET/CT images. (C, D) Corresponding PET/MR imaging obtained in the same patient after sur-
gery and radiotherapy for SCC of the oral cavity. Owing to dental hardware, the oral cavity can be hardly eval-
uated on PET/CT; however, on PET/MR imaging, no recurrent disease can be identified. Note the relatively limited
artifact due to metal implant on the left (arrows). Normal flap used to reconstruct the floor of the mouth on the
right (asterisks).
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prevertebral space invasion can be diagnosed by
exploratory cervicotomy or by palpation during
panendoscopy. Both the MR imaging feature
“complete obliteration of the retropharyngeal fat”
and the combination of PET-based parameters
“focal FDG uptake of prevertebral muscles and
increased SUVmax of the primary tumor” indepen-
dently predicted fixation to the prevertebral space
with an accuracy of 98%.46 In a series of 58 pa-
tients with primary and recurrent HNSCC, Sekine
and colleagues evaluated further factors affecting
local tumor resectability (eg, invasion of the medi-
astinum, mandible and laryngeal cartilages, or
perineural spread [PNS]) and found that both
contrast-enhanced PET/CT and PET/MR imaging
with a fully diagnostic regional MR imaging proto-
col (but without DWI or perfusion imaging) per-
formed equally well, although there was a slight
but nonsignificant trend toward more accurate re-
sults with PET/MR imaging.47 The standard of
reference in this study consisted in clinical
findings, intraoperative results and/or histopathol-
ogy, which was, however, available only in 51% of
cases.

PNS along the cranial nerves has a major impact
on prognosis, risk stratification, staging, and treat-
ment planning in a variety of HN tumors; however,
it is often underdiagnosed clinically. HNSCC
and adenoid cystic carcinoma have the highest
incidence of PNS, followed by desmoplastic mela-
noma, mucoepidermoid carcinoma, and lym-
phoma.48,49 Contrast-enhanced MR imaging is
considered the most appropriate imaging modality
to detect PNS and invasion of the skull base.50 Pri-
mary MR imaging findings in PNS include thick-
ening, nodularity, nerve enhancement, and fat
pad obliteration, and secondary MR imaging find-
ings are denervation of muscles as well as
changes of the superficial muscular aponeurotic
system.50 PNS can also be detected on FDG
PET—if tumors are FDG avid or in the presence
of extensive PNS—and correlation with anatomic
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imaging improves the assessment of PNS pres-
ence and extent and skull base invasion.49,51

Although some investigators highly recommend
FDG PET/CT to assess PNS, others suggest using
PET/MR imaging or PET/CT only as problem-
solving tools in posttreatment surveillance as MR
imaging has a high diagnostic performance in the
assessment of PNS.50,52 As suggested by several
investigators and based on our own experience,
PNS lesions can be missed on PET/CT scans
and combining PET with MR imaging improves
the detection of PNS (Fig. 6).44,47,51 Nevertheless,
there are currently no studies comparing the diag-
nostic performance of PET/MR imaging with PET/
CT or MR imaging alone specifically addressing
PNS, and further research is necessary to estab-
lish more conclusive comparisons.
Lymph Node Evaluation (N Staging)

The presence of lymph node metastases in
HNSCC is one of the most important parameters
affecting prognosis, one single positive node
already decreasing survival by 50%.53 Other fac-
tors affecting survival include the number of meta-
static nodes, their location in the neck (upper vs
lower neck), and the presence of extranodal exten-
sion (ie, cancer extending beyond the nodal
capsule). Therefore, early detection and accurate
Fig. 6. (A, C) PET/CT images. (B, D) Corresponding MR imag
cavity (asterisks) invading the horizontal branch of the ma
not show any PNS along the mandibular nerve (V3). How
covery (STIR) image (D) clearly shows thickening of V3 (a
sponding to PNS. After IV administration of contrast m
(not shown). Six months after surgery and radiochemothe
staging of lymph node metastases are crucial for
determining appropriate treatment strategies to
improve patient outcome.
To diagnose metastatic lymph nodes in HNSCC,

the following PET/DWI/MR imaging criteria are
applied (Figs. 7 and 8): morphologic MR imaging
criteria (size > 10 mm, rounded shape, irregular
margins, inhomogeneous enhancement, central
nodal necrosis); restricted diffusivity (ADC values
in metastatic nodes are lower than in reactive
nodes; however, no uniform cutoff value is avail-
able in the literature); and increased glucose meta-
bolism (focal FDG uptake of metastatic nodes, but
no uniform cutoff value, occasionally absent FDG
uptake in entirely necrotic nodes).
Most studies evaluating the diagnostic perfor-

mance of FDG PET/MR imaging for the N staging
of HNSCC are either based on relatively small sam-
ple sizes or there is no histopathologic correlation
to confirm the N stage. Among the few studies
with neck dissection specimen as standard of refer-
ence, a comparable N staging accuracy with PET/
MR imaging and PET/CT was reported by Sekine
and colleagues in 14 HNSCC patients, by
Schaarschmidt and colleagues in 25 HNSCC pa-
tients, and by Huang and colleagues in 11 patients
with hypopharyngeal SCC, respectively.39,40,41

Huang and colleagues also reported that PET/MR
imaging, PET/CT, and MR imaging alone had a
ing obtained in the same patient with SCC of the oral
ndible. SUVmax, 18. The coronal PET/CT image (C) does
ever, the corresponding coronal Short-TI Inversion Re-
rrows) extending up to the foramen ovale and corre-
aterial, enhancement of the thickened V3 was seen
rapy, PNS progressed intracranially.



Fig. 7. Characteristic aspect of metastatic lymph nodes on CT and PET/MR imaging. (A) Contrast-enhanced CT im-
age obtained in a 58-year-old patient with an HPV positive base of the tongue SCC (asterisk). Note an ipsilateral
enlarged level II metastatic node (arrow) with peripheral rim enhancement and necrotic portions. Corresponding
PET/MR imaging obtained at the same level (B). T2W image (C) b 1000 image from DWI. (D) Fused PET and
contrast-enhanced Dixon image. The tumor (asterisks in B and C) invades the extrinsic tongue muscles and has
an intermediate signal intensity on T2, restricted diffusion and increased FDG uptake (SUVmax 5 15). The solid
portions of the level II metastatic node (thick yellow arrows) show increased FDG uptake (SUVmax5 14), whereas
the necrotic portions (thin arrows) show no relevant uptake.
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similar sensitivity, specificity, and accuracy in the
per-patient analysis (n 5 11), per-nodal level anal-
ysis (n 5 54), and per-node analysis (n 5 464),
respectively.40 Inter-reader agreement for PET/MR
imaging, PET/CT, and MR imaging was perfect
with Cohen kappa values greater than 0.9.40 Like-
wise, Platzek and colleagues found no significant
differences between PET/MR imaging, PET alone,
and MR imaging alone in terms of sensitivity, spec-
ificity, and accuracy in their analysis of 391
dissected lymph node levels in 38 patients with
HNSCC.54 In contrast, based on a series of 44
HNSCC patients with clinically N0 necks and neck
dissections, Cebeci and colleagues found that
PET/MR imaging had a superior sensitivity and
negative predictive value (NPV) in comparison to
MR imaging alone (sensitivity 5 83% vs 50%;
NPV 5 97% vs 92%, P < .05).55 Likewise, based
on the analysis of 865 lymph nodes obtained from
neck dissections in 26 patients, Crimi and col-
leagues found that compared with contrast-
enhanced MR imaging alone or PET alone, PET/
MR imaging had a superior diagnostic perfor-
mance.56 Furthermore, PET/MR imaging with a
SUVmax cutoff of 5.7 combined with size and/or
morphologic MR imaging criteria reached high
values for accuracy (98.2%), NPV (98.2%), and
positive predictive value (PPV) (95.2%).56

Among the studies using the N stage set at the
multidisciplinary tumor board (MDTB) as standard



Fig. 8. PET/DWIMR imaging features of metastatic lymph nodes seen in a patient with NCUP. (A) Contrast-
enhanced Dixon sequence. (B) b 1000 image from DWI. (C) ADC map from DWI. (D, E) Coronal STIR images. (F).
Fused PETand T2W image. The patient presented with a level II palpable node (yellow arrows) which has the char-
acteristic features of a metastatic lymph node (increased size, restricted diffusion with ADC 5 0.85 � 10–3 mm2/s,
inhomogeneous enhancement and increased FDG uptake, SUVmax 5 16). The smaller level Ib node on the right
(green arrows) is suspicious on MR imaging (rounded shape, irregular contour, low ADC, and inhomogeneous
enhancement) but shows no FDG uptake due to its small size. On (F), a lesion is seen in the right base of the tongue
(blue arrows), which was retrospectively also identified on the coronal STIR (E). Owing to geometric distortion on
DWI, the base of the tongue lesion is not seen. Biopsy-revealed HPV-negative SCC in the base of the tongue. Ultra-
sonography-guided fine needle aspiration cytology (US FNAC) of level II and level Ib nodes was positive for SCC.
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of reference, Flygare and colleagues found that
PET/MR imaging was more accurate than PET/
CT in 40 patients with oropharyngeal SCC.43 In
the series of Chan and colleagues (113 patients
with nasopharyngeal cancer), the standard of
reference consisted of the N stage set at the
MDTB after having performed ultrasonography-
guided fine needle aspiration cytology (US FNAC)
or biopsy in cases with discordant imaging find-
ings.44 The investigators found that the sensitivity
of PET/MR imaging (99.5%) was higher than that
of PET/CT (91%) or MR imaging alone (94%);
PET/MR imaging was particularly useful for distin-
guishing retropharyngeal nodal metastases from
nasopharyngeal tumors.44

The above-mentioned studies are based on PET
and morphologic MR imaging criteria, and data on
the combined PET/DWIMR imaging assessment
of lymph nodes in HNSCC are still lacking. In
several publications, DWIMR imaging has been
shown to have a high diagnostic accuracy for
detecting lymph node metastases, including sub-
centimeter metastatic lymph nodes.57–60 In a sys-
tematic review, Driessen and colleagues reported
that the accuracy of DWIMR imaging was 85%
to 91% and the NPV was higher than 91% for
the assessment of metastatic lymph nodes.61 Bel-
fiore and colleagues concluded that ADC values
can be reliably used to assess metastatic lymph
nodes in the neck and that the sensitivity, speci-
ficity, and area under the curve (AUC) of a nar-
rower region of interest (ROI) for recognizing
metastases were greater compared with the ADC
value of the whole node.62 Several studies on
PET, DWI, and MR imaging characteristics of
HNSCC lymph nodes have assessed differences
between normal and metastatic neck nodes
without reporting the diagnostic performance of
the respective modalities for N staging.63,64 From
a clinical point of view, it would be very useful to
know whether combining morphologic MR imag-
ing criteria with DWI and PET criteria could
improve the N staging accuracy in HNSCC.
Detection of Distant Metastases (M staging)
and Second Primary Cancers

Distant tumor spread includes hematogenous
spread to distant organs and lymphatic spread to
distant lymph nodes. Up to 28% of patients with
primary and recurrent HNSCC have metastases
or second primary cancers at the time of
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diagnosis.24,65,66 These second primary cancers
originate within the HN region or in distant sites
(eg, lung, esophagus, or colon). Most of the
HNSCC metastases are found in the lungs or
mediastinum, whereas bone and liver metastases
are uncommon. In a prospective study evaluating
distant metastases and second primary cancers
in 82 HNSCC patients undergoing PET/MR imag-
ing and PET/CT, Katirtzidou and colleagues re-
ported that patients imaged for follow-up/
suspected HNSCC recurrence had a higher inci-
dence of distant malignant lesions compared
with patients with primary tumors or NCUP; the
standard of reference was histology and follow-
up greater than 2 years or until death.24

In the past, HNSCC patients with distant metas-
tases were treated only palliatively and screening
for distant metastases aimed to avoid aggressive
locoregional treatment. However, in recent years,
as oligometastases are treated by metastasec-
tomy or stereotactic radiotherapy, the therapeutic
paradigm in HNSCC patients has changed.67 In
addition, there is a growing body of evidence sup-
porting the implementation of whole-body MR im-
aging or FDG PET/MR imaging for the detection of
distant metastases.67–69

In a prospective study enrolling 198 patients
with primary oropharyngeal and hypopharyngeal
SCC, Yeh and colleagues found a similar PET/
MR imaging and PET/CT sensitivity for the detec-
tion of second primary cancers and metastases to
neck nodes and distant sites (73.5% vs 69.9%,
P 5 .08) and there were no significant differences
in terms of diagnostic capability between MR im-
aging and PET/CT (AUC 5 0.905 vs 0.917,
P 5 .469) and between PET/MR imaging and
PET/CT (AUC5 0.930 vs 0.917, P5 .062), respec-
tively; the standard of reference was biopsy and
follow-up greater than 1 year or until death.66

In contrast to the study of Yeh and colleagues,
Katirtzidou and colleagues specifically focused
on malignant lesions outside the HN area. In a pro-
spective study including 103 examinations in 82
HNSCC patients with 183 distant lesions, the in-
vestigators reported that PET/MR imaging had a
similar and high diagnostic performance as PET/
CT for the detection of distant malignant lesions
(metastases and second primary cancers), regard-
less of the type of analysis conducted (AUC per
patient 5 0.947 vs 0.975; AUC per examina-
tion 5 0.965 vs 0.968; AUC per lesion 5 0.957 vs
0.944, P > .05) (Figs. 9–11). Depending on the
analysis type (per patient, per examination, per
lesion), the sensitivity, specificity, and accuracy
varied between 94%–96%, 85%–90%, and
89%–91% for PET/MR imaging and 90%–96%,
86%–93%, and 88%–93% for PET/CT,
respectively; all pairwise comparisons yielded P
values > 0.05.24 Furthermore, the findings in this
study suggested that due to the high occurrence
of distant metastases and second primary cancers
during follow-up, imaging with FDG PET/CT or
FDG PET/MR imaging outside the HN area should
be considered more frequently. As FDG PET/MR
imaging has shown excellent results in detecting
local recurrence after radio(chemo)therapy,13 the
investigators suggested that whole-body PET/
MR imaging could reliably complement locore-
gional PET/MR imaging assessment.24

Based on a meta-analysis including 14 studies
(1042 patients), Zhang and colleagues reported a
higher sensitivity of FDG PET/MR imaging
compared with PET/CT (0.87 vs 0.81), a higher
AUC value (0.98 vs 0.95), and similar specificity
(0.97 vs 0.97) for detecting distant metastases.70

This meta-analysis included, however, different
cancer types, for example, breast and lung cancer,
which are known to be more commonly associ-
ated with bone metastases than HNSCC.71 The in-
vestigators also noted that FDG PET/MR imaging
and PET/CT had different diagnostic perfor-
mances in different tumors types, for example,
the accuracy of PET/MR imaging was higher in pa-
tients with breast cancer, whereas the accuracy of
PET/CT was higher in patients with lung cancer.70

As most HNSCC patients develop distant malig-
nant lesions in the lungs (and rarely in the bones), it
is important to be aware of the diagnostic PET/MR
imaging performance for lung nodules. Several in-
vestigators have suggested that PET/MR imaging
can reliably detect and characterize FDG-avid pul-
monary lesions.68,69,72 In a study involving patients
with different types of primary cancers, Chandar-
ana and colleagues showed that PET/MR imaging
had a high sensitivity for the detection of FDG-avid
nodules (96%) and nodules greater than 0.5 cm in
diameter (89%), with a low sensitivity for small
non-FDG-avid nodules.68 Likewise, Lee and col-
leagues reported a high detection rate for FDG-
avid pulmonary nodules (sensitivity 5 98%) with
PET/MR imaging in a series of 51 patients with
different cancer types, whereas the sensitivity for
non-FDG-avid small nodules was only 35%.69

The FDG-avidity of tumors is influenced by their
histology, which impacts the diagnostic perfor-
mance of FDG PET. Therefore, it is essential for
studies to consider this aspect. As metastases
and distant second primary cancers in HNSCC pa-
tients are mostly FDG-avid, the detection rate in
HNSCC is high and similar with PET/MR imaging
and PET/CT. Furthermore, the study of Katirtzidou
and colleagues found that FDG-negative lung nod-
ules �8 mm in HNSCC patients were predomi-
nantly benign.24 It is worthwhile mentioning that



Fig. 9. Lung metastases correctly diagnosed on PET/MR imaging (A, B) and PET/CT (C, D) in a 60-year old woman
with nodal recurrence after radiochemotherapy for oropharyngeal HPV-negative SCC. The right upper lobe
metastasis (arrows) shows a combination of high focal FDG uptake (SUVmax on PET/MR imaging 5 7.7 and SUV-
max on PET/CT 5 9.3) and an excavated aspect on the contrast-enhanced fat-saturated MR image and on the cor-
responding CT image. The left upper lobe metastasis (dashed arrows) displays minor focal FDG uptake (SUVmax
on PET/MR imaging 5 1.7 and SUVmax on PET/CT 5 2.1) and clustered nodules on the corresponding morpho-
logic MR imaging/CT images. Both lesions were rated with a score of 5 (highly suspicious) on PET/MR imaging
and PET/CT. (Reproduced from Katirtzidou et al.24)
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false positive evaluations due to high FDG uptake
can also occur (especially in the mediastinum) and
depending on the clinical situation, biopsy is
mandatory (Fig. 12).
In conclusion, the current literature suggests

that both PET/MR imaging and PET/CT have a
high and comparable diagnostic performance for
the detection of distant metastases and distant
second primary cancers in HNSCC patients.
NECK CARCINOMA OF UNKNOWN PRIMARY

Historically, 1%–9% of HNSCC were considered
as NCUP.73 However, during the past decades,
the incidence of NCUP has increased due to the
increasing incidence of HPV-positive oropharyn-
geal SCC, which often presents clinically as
NCUP. The 8th edition of the TNM staging manual
classifies HPV-positive NCUP as HPV-positive
oropharyngeal SCC.74

The guidelines for the workup of NCUP include
US FNAC or US-guided biopsy of the enlarged
neck node (with p16 immunohistochemistry and
direct HPV testing), PET/CT, MR imaging,
endoscopic biopsy under general anesthesia, ton-
sillectomy, and more recently narrow band imag-
ing and tongue base mucosectomy.73,75 Narrow
band imaging uses blue and green light with
different wavelengths to optimize visualization of
mucosal microvascular changes as seen in
dysplasia and malignancy.
In most studies, the reported rates of NCUP

identification with FDG PET/CT remain below
55%.73,76–78 In contrast, only one study including
30 NCUP patients reported a sensitivity of
94%.10 Most investigators agree that FDG PET/
CT has a relatively high number of false positives
(up to 40%) due to the physiologic uptake of
oropharyngeal lymphoid tissue.10,73,78 Neverthe-
less, FDG PET/CT enables the detection of addi-
tional metastatic lymph nodes and distant
metastases.78 Recently, Noji and colleagues re-
ported that the sensitivity and specificity of quali-
tative and quantitative analysis with DWIMR
imaging and FDG PET/CT were similar; however,
adding DWIMR imaging did not improve the accu-
racy of FDG PET/CT.10 An important limitation of
most published studies is the fact that most series



Fig. 10. Rib metastasis detected on both PET/MRI (A, B) and PET/CT (C, D) in a 42-year old female without loco-
regional recurrence after radiochemotherapy for an SCC of the paranasal sinuses. The rib lesion (arrows on all
images) shows a combination of high focal FDG uptake (SUVmax on PET/MR imaging 5 6.3 and SUVmax on
PET/CT 5 4.7) and an expansile aspect on MR imaging/CT. Note lesion enhancement on the contrast enhanced
fat saturated MR image. The lesion was rated with a score of 5 (highly suspicious) on PET/MR imaging and
with a score of 4 (moderately suspicious) on PET/CT. Dashed arrows point at a liver cyst. (Reproduced from
Katirtzidou et al.24)
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included only a small number of patients. In the
only study published so fat directly comparing
the diagnostic performance of FDG PET/CT with
PET/MR imaging (without DWI), Ruhlmann and
colleagues found a similar diagnostic ability for
the detection of primary cancer and metastases
in 20 patients with NCUP.78

Based on the current literature, no evidence-
based conclusion can be drawn about the role of
PET/MR imaging � DWI in the workup of NCUP
and further studies are warranted.
TUMOR SEGMENTATION

Curative treatment options for patients with
HNSCC include surgery and radio(chemo)therapy.
Regardless of the chosen treatment, precise and
accurate delineation of tumor margins and, there-
fore, tumor volume are fundamental for effectively
managing patients with HNSCC. In surgical pro-
cedures, a delicate trade-off must be achieved be-
tween a limited tumor resection with the risk of
positive or close margins (associated with poorer
prognosis) and a wide resection (leading to unsat-
isfactory functional and cosmetic outcomes).

In terms of tumor volume, radiation oncologists
distinguish between gross tumor volume (GTV,
which is the delineated radiologically measurable
tumor), clinical target volume (CTV, which adds a
margin to the GTV to cover areas of potential
microscopic disease), and planning target volume
(PTV, defined as the CTV surrounded by adequate
margins to account for organ and patient motion or
variation in patient position). Although the adop-
tion of intensity-modulated radiation therapy pro-
tocols has reduced irradiation volumes on the
one hand (thus avoiding irradiation of organs at
risk), it has also increased the importance of pre-
cise GTV delineation on the other hand.79–81 Pre-
cise delineation of GTVs has not only a direct
impact on patient outcome but it can also jeopar-
dize the robustness of quantitative metrics,
including radiomics features.82

Although contrast-enhanced CT is a standard
imaging technique for radiation therapy planning
in HNSCC, it falls short in precisely delineating
GTVs of primary tumors and lymph node metasta-
ses. Incorporating PET data into radiation therapy
planning offers several advantages over using CT
alone.79 By using FDG PET, the risk of inaccurately
targeting radiation delivery to the intended vol-
umes is reduced.83,84 In addition, the use of other
radiotracers, such as 18F-fluoromisonidazole, a
biomarker for hypoxia, can identify tissues that
require intensified treatment approaches.85

Beyond PET biomarkers, functional MR imaging
biomarkers provide the ability to characterize
cellularity, vascularity, and permeability of tumors,



Fig. 11. False-negative PET/MR imaging (A) and PET/CT (B) in an 89-year-old man with primary SCC of the oral
cavity. Both PET/MR imaging and PET/CTwere rated as negative for distant metastases or second primary cancers
(diagnostic score5 1). PET/MR imaging (A) shows no lesion. PET/CT (B) and detail of the corresponding CT compo-
nent of the PET/CT (C) show a non-FDG avid 5 mm solid lung nodule (arrow in C), which was considered as benign
according to diagnostic criteria (no FDG uptake and �8 mm in size). The lesion was rated with a score of 1 on PET/
MR imaging and PET/CT. Follow-up CT obtained 2 months later (D) showed no change in size and shape of the
5 mm nodule (arrow). CT obtained 7 months later (E) revealed no change in the 5 mm nodule (arrow), however,
a pleural metastasis (dashed arrow) that was confirmed histologically. As the pleural metastasis occurred within
the 2-year follow-up, both PET/CTand PET/MR imaging were considered as false negative. In this study, criteria for
progression were an increase in lesion size during follow-up or the appearance of new lesions within 2 years. A
greater than 2-year follow-up period was chosen as distant metastases/second primary cancers may be subclinical
at initial imaging, and depending on tumor kinetics and patient immune status, they may show only minimal
changes over time. (Reproduced from Katirtzidou et al.24)
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thus leading to a more accurate representation of
the biological tumor volume.30,86

Against this background, the focus of attention
has recently shifted toward multimodality PET/
MR imaging or PET/CT/MR imaging-guided esti-
mation of GTV.79,87 Nevertheless, published data
on this topic are very scarce. Moreover, most
studies are based on small series without histo-
pathologic correlation and GTVs defined on plan-
ning CT or on morphologic MR images were used
as standard of reference (ground truth). In a pro-
spective study including 11 patients with HNSCC,
Wang and colleagues compared primary and
nodal GTVs delineated on CT (ground truth) with
the corresponding GTVs delineated on PET/MR
imaging; the investigators found that PET/MR im-
aging- and CT-derived GTVs were similar. Howev-
er, the Dice similarity coefficient (DSC), a metric
evaluating the spatial overlap between two
measured volumes, was only 0.63 to 0.69 (DSC
range 5 0–1, with 1 indicating perfect match),
and the modified Hausdorff distance (ie, the
orthogonal distance difference between CT and
PET/MR imaging segmentation) was 1.6 to
2.3 mm.88 Samolyk-Kogaczewska and colleagues
evaluated the usefulness and accuracy of PET/MR
imaging GTV delineation by radiation oncologists
in 10 patients with SCC of the tongue.89 The
GTVs for primary tumors and lymph nodes defined
on CT (ground truth) were compared with the GTVs
delineated on PET/MR imaging. The investigators
found that in 7/10 patients, the volumes were
smaller on PET/MR imaging than on CT. The inves-
tigators also analyzed which SUVmax threshold
best matched the ground truth, and they reported
best results for 30% SUVmax for tumors and
30%–40% SUVmax for lymph nodes, respec-
tively.89 Bird and colleagues found significant



Fig. 12. False-positive PET/MR imaging (A,B) and PET/CT (C,D) in a 63-year old woman imaged for follow-up of an
SCC of the larynx (T3N1) treated with radiochemotherapy. Both PET/MR imaging and PET/CT were rated as pos-
itive for distant mediastinal lymph node metastases. An enlarged mediastinal lymph node (arrows) shows a com-
bination of high focal FDG uptake (SUVmax on PET/MR imaging 5 7.5 and SUVmax on PET/CT 5 6.7) and slightly
heterogeneous contrast enhancement on the contrast-enhanced fat-saturated MR image. On the corresponding
CT image, due to the absence of contrast enhancement, only lymph node enlargement was present
(13 � 15 � 17 mm). The lymph node was rated with a score of 5 (highly suspicious) on PET/MR imaging and a
score of 4 (moderately suspicious) on PET/CT. However, mediastinoscopy with biopsy-revealed sarcoidosis. (Repro-
duced from Katirtzidou et al.24)

Fig. 13. The complexity of multiparametric segmentation with 3D rendering of the segmented GTVs. (A) Segmen-
tation of an oropharyngeal SCC based on the ADC map. Two different readers (a radiation oncologist and a
specialized head and neck radiologist) segmented the tumor. The intersection volume is indicated in blue. (B)
Segmentation of the same oropharyngeal SCC by one reader based on a multiparametric PET/MR imaging acqui-
sition (ADC, PET, contrast-enhanced T1 and T2 images). The intersection volume is rendered in dark red. Note that
there is neither a perfect overlap between the GTVs contoured on the different modalities nor between the two
readers.
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Fig. 14. Posttreatment inflammatory edema in a patient with radiochemotherapy and neck dissection for an SCC
of the oral cavity. Note a poorly delineated area with high signal intensity on T2, major contrast enhancement, no
restriction of diffusion and no relevant FDG uptake (yellow arrows).
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differences in mean GTVs between CT, MR imag-
ing, PET, and combinations thereof in 11 patients
with locally advanced oropharyngeal SCC with no
single imaging technique encompassing all poten-
tial GTV regions.90 The investigators also found
that the use of MR imaging reduced interobserver
variability.
Fig. 15. Posttreatment scar in a patient with radiotherapy,
SCC of the oral cavity. Images obtained from a PET/DWIM
enhanced T1W image (arrow). (B) Corresponding T2W im
focal uptake on the fused PET and contrast-enhanced T1W
with very low signal intensity (arrow) corresponding to ma
is seen resulting in a low ADC value (ADC 5 0.93 � 10–3
In the only study published so far using histopa-
thology of the resected specimen as ground truth
and GTV contoured on a modern PET/MR imaging
hybrid system, Terzidis and colleagues compared
the pathologic GTVs obtained from 13 surgical
HNSCCspecimens (GTVpatho) with the correspond-
ing CTVs delineated on PET/MR imaging in
partial pelviglossectomy and left neck dissection for an
R imaging examination. (A) Fused PET with contrast-
age. (C) b 1000 image. (D) ADC map. Note an area of

image. SUVmax 5 9. The T2W image shows an area
ture scar tissue. On DWI, a T2 black-out effect (arrows)
mm2/s).



Fig. 16. True positive evaluation with combined PET/DWIMR imaging (positive concordant findings on MR imag-
ing, DWI, and PET). A 69-year-old man with pain 4 years after radiochemotherapy for SCC of the hypopharynx.
Unenhanced T1 (A): poorly defined hypointensity in both aryepiglottic folds, pre-epiglottic space, and retrophar-
yngeal space. Contrast-enhanced T1 (B): infiltrative, moderately enhancing lesion (white arrows) in the right para-
glottic and pre-epiglottic space with invasion into the soft tissues of the neck (black arrow) suggesting recurrence.
Note strongly enhancing retropharyngeal space and left aryepiglottic fold due to inflammatory edema. (C) ADC
map: restricted diffusion on the right (arrows, ADCmean 5 0.997 � 10�3 mm2/s) consistent with recurrence.
High signal in the left paraglottic space and retropharyngeal space (ADCmean5 1.815� 10�3mm2/s) due to inflam-
matory edema. (D) PET/MR imaging (PET fused with gadolinium-enhanced Dixon) consistent with recurrence (ar-
rows, SUVmean 5 4.417; SUVmax 5 5.518). (E) Corresponding whole-organ axial histologic section (hematoxylin-
eosin, HE) confirms recurrence on the right (arrows) and inflammatory edema on the left and in the retropharyng-
eal space. (F) Section from right specimen periphery (HE, original magnification 100 � ) depicts venous tumor
thrombi (arrows). T stage on PET/DWIMR imaging was T4a. Pathologic stage was pT4a. (Reproduced from Becker
et al 2018.6)
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combination with clinical information
(GTVoncologic).

80 The mean tumor volume defined
by PET/MR imaging and clinical information
(GTVoncologic) was larger than the tumor volume
defined at histopathology. Themean mismatch be-
tween theGTVpatho and theGTVoncologic (ie, the per-
centage of GTVpatho not encompassed in the
GTVoncologic) was 27.9% and in 12/13 patients
GTVpatho was not fully encompassed in the
GTVoncologic. Nevertheless, an isotropic 5 mm
expansion to GTVoncologic was sufficient to cover
the GTVpatho.

80 The investigators concluded that
despite modern PET/MR imaging technology, a
mismatch between imaging and GTVpatho was
observed in all patients.80 They also pointed out
that reducing margins by even 1 mm may increase
the proportion of tumor outside the radiotherapy
target volume, which could explain recurrences at
the periphery of GTVs delineated for radiotherapy
treatment planning.80

In routine clinical work, GTVs and CTVs are
contouredmanually by radiation oncologists. How-
ever, this time-consuming task suffers fromsubjec-
tivity, interobserver variability, and other factors
affecting human expertise. For example, recent
publications have shown that the review of
oncologist-delineated radiotherapy target volumes
by specialized HN radiologists changes 52%–55%
of volumes delineated on CT or MR imaging.91,92

Moreover, Adjogatse and colleagues reported
that MR imaging-based peer review by specialized
HN radiologists altered 76% of GTVs and 41.5% of
gross nodal volumes with 55% of GTV and 67% of
gross nodal volume alterations classified as



Fig. 17. True positive evaluation with combined PET/DWIMR imaging (positive concordant findings on MR imag-
ing, DWI, and PET). A 48-year-old man with reflex otalgia 1 year after radiochemotherapy for SCC of the base of
the tongue. Endoscopy: edema and intact mucosa. T2 (A) infiltrative tumor recurrence with intermediate signal
(arrows) in the left tongue base, extrinsic tongue muscles, vallecula, and parapharyngeal space. Suspected inva-
sion of the left submandibular gland (pink asterisk). Submucosal edema with very high T2 signal (green asterisk).
Normal right submandibular gland (blue asterisk). ADC map (B) restricted diffusion suggesting recurrence (white
asterisk, ADCmean 5 1.127 � 10�3 mm2/s). High ADC signal surrounding the tumor (green asterisks, ADC-
mean 5 1.789–1.965 � 10�3 mm2/s) due to edema. Left and right submandibular glands (pink and blue asterisks).
(C) PET/MR imaging (PET fused with T1) suggests recurrence (increased FDG uptake, arrows, SUVmean 5 7.688;
SUVmax 5 12.11). Left and right submandibular glands (pink and blue asterisks). (D) Whole-organ axial section
from surgical specimen (same orientation) confirms recurrence (white asterisk) invading the above-described
structures. Submandibular gland (pink asterisk). Tumor margins contoured by pathologist (white line). Green
asterisks: inflammatory edema. T-stage on PET/DWIMR imaging was T4a. Pathologic stage was pT4a. (Reproduced
from Becker et al 2018.6)
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“major.” Undercontouring of soft tissue involve-
ment and unidentified lymph nodes were main rea-
sons for change.81 Therefore, some institutions
have already introduced a formal MR imaging-
based radiology review of oncologist-delineated
target volumes into the radiotherapy workflow for
patients with HNSCC.81

As we can see from these different studies,
manual tumor segmentation has inherent draw-
backs related not only to factors affecting human
expertise but also because of lacking availability
of specialized manpower for peer review of
contoured GTVs. Therefore, advanced computa-
tional approaches such asDLmodels hold promise
to standardize and fully automatize tumor segmen-
tation and to improve consistency and accuracy in
target definition for radiotherapy.93 As the develop-
ment of DL models requires very large data sets,
which usually cannot be obtained in a single center
and as data acquired in a single center may be too
homogeneous, therefore impeding generalizability,
current DL approaches for HNSCC segmentation
are based on centralized or on federated frame-
works, which incorporate data from many different



Fig. 18. PET/MR imaging obtained 6 months after proton therapy and chemotherapy for undifferentiated sino-
nasal carcinoma. Recurrence in the nasopharynx was suspected clinically. (A) Axial T1W image shows a large hy-
pointense nasopharyngeal mass (asterisk). (B) Corresponding fat-saturated gadolinium-enhanced T1W shows
that the nasopharyngeal mass (asterisk) invades the clivus and central skull base, suggesting recurrence versus
radiation-induced inflammation. (C) ADC map reveals restricted diffusivity (ADCmean, 0.98 � 10–3 mm2/s) suggest-
ing recurrence (asterisks). (D) Corresponding fused PET and gadolinium-enhanced fat-saturated T1 reveal absent
FDG uptake (asterisk) suggesting inflammation. Surgical biopsy and follow-up greater than 3 years revealed in-
flammatory tissue. (Images B, C, and D reproduced from Becker et al 2014.1)
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centers.82,94–96 In the centralized framework, the
centers send their data to a central server with sig-
nificant computational power, whereas in the
federated framework, the users train DL models
locally and then send the data to a central server;
the central server then aggregates the local up-
dates into a global network. The decentralized
federated framework has the advantage of
addressing privacy concerns as well as ethical
and legal issues.97 Based onPET images only, Shiri
and colleagues have shown that the performance
of DL approaches for the segmentation of HNSCC
is nearly identical for the centralized and federated
approach, both approaches having a DSC of 0.84
and a negligible percent relative error for SUVmax

comparedwithmanual specialist tumor segmenta-
tion. In addition, PET/CT information fusion has
been shown to outperform segmentation tasks
based on PET only and CT only images, conven-
tional image level, and DL fusions achieving
competitive results.96 Future challenges for DL-
based segmentation of HNSCC include segmenta-
tion tasks based on multimodality PET/DWI/MR
imaging information (Fig. 13).
EVALUATION OF TREATMENT RESPONSE AND
DETECTION OF RECURRENT DISEASE

Recurrence in HNSCC is relatively common and
depends on patient age, tumor subsite and stage,
histologic differentiation, and treatment type. Most
recurrences occur at the site of the primary tumor
within 2 to 3 years after treatment. Irrespective of
tumor type, early detection of recurrent disease
is crucial. However, endoscopic and clinical
follow-up may miss recurrent disease, especially
after radiotherapy due to radiation-induced
changes (edema, fibrosis, soft tissue, cartilage,
or bone necrosis).



Fig. 19. (A) Contrast-enhanced PET/CT and corresponding DWIMR imaging obtained in a 70-year-old patient with
radiotherapy for SCC of the oropharynx 3 years previously. (A) Contrast-enhanced CT. (B) Fused PET and unen-
hanced CT image. (C) T2W image. (D) b 1000. (E) ADC map. (F) Subtraction image (T1W image was subtracted
from the contrast-enhanced T1W image). On CT, an enhancing lesion (arrows) surrounding the fragmented hor-
izontal branch of mandible is seen on the left. Strong FDG uptake (SUVmax, 16). On PET/CT, it is difficult to distin-
guish between osteoradionecrosis and recurrent SCC or a combination of both entities. There is an intermediate
signal intensity on T2 within the mandible and in the soft tissues surrounding the mandible (arrows). On DWI,
there is restriction of diffusivity (arrows) within the mandible but the area with restricted diffusivity does not
show enhancement on F (arrow). This aspect strongly suggests osteoradionecrosis of the mandible. The soft
tissues surrounding the mandible have an increased diffusivity and strong enhancement (green asterisks on E
and F). They correspond to inflammation. The patient underwent hyperbaric oxygen therapy and 1 year later,
there is still no evidence of recurrent SCC.

Becker et al558
Studies evaluating the diagnostic performance of
PET and PET/CT for the follow-up of HNSCC found
that the sensitivity and NPV of PET and PET/CT for
detecting residual/recurrent HNSCC at the primary
site were very high, however—due to posttreatment
inflammatory changes—the specificity and PPV
were limited—especially on the baseline scan at
12weeks after radiotherapy.98–100 Several investiga-
tors have reported a high sensitivity and specificity
with DWIMR imaging to detect posttreatment
HNSCC recurrence; however, the PPV andNPV var-
ied significantly among the different studies.101–103

These discrepant DWIMR imaging results can be
explained by the fact that different MR imaging
criteria and different DWI protocols with different
combinations of b values were used. As recently
shown, different combinations of b values have a
direct impact on ADC values and even on the ability
of DWI to distinguish between HPV-positive and
HPV-negative HNSCC.104,105 Nevertheless, the
combination of precise morphologic MR imaging
criteria with DWI and PET characteristics enables
reliable distinction between edema, fibrosis, and
recurrent/residual HNSCC on PET/DWIMR imag-
ing.6 Inflammatory edema can have a variable FDG
uptake on PET images and variable contrast
enhancement on MR imaging. On T2W images,
poorly delineated areas with a high signal intensity
areseen,andonDWI, there isno restricteddiffusivity;
therefore, ADC values are high (T2 shine through ef-
fect)6,103,106 (Fig. 14). Fibrosis can display variable
FDG uptake and variable contrast enhancement;
however, a very low signal intensity on T2W images
and a low ADC.13,103 Because late fibrosis is mainly
composed of densely packed collagen, ADCs tend
to be low because of the T2 blackout effect
(Fig. 15). Finally, recurrent HNSCC typically displays
a strong FDG uptake, moderate contrast enhance-
ment,an intermediatesignal intensityonT2Wimages
and restricted diffusivity6 (Figs. 16 and 17). By



� Both primary and recurrent head and neck
squamous cell carcinoma (HNSCC)havecharac-
teristic PET/diffusion-weighted imaging (DWI)
MR imaging features, which include the
following: an intermediate signal intensity
on T1W, T2W, or fat-saturated T2Wsequences,
and moderate enhancement after IV adminis-
tration of contrast material; restricted diffu-
sivity with apparent diffusion coefficient
(ADC) values less than 1.2 to 1.3 � 10 to 3
mm2/s; increased FDG uptake with SUVmax
values most often greater than 3.

� MR imaging reliably detects perineural spread
(PNS). Findings on MR imaging scans include
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combining these criteria, we reported a high diag-
nostic performance with PET/DWIMR imaging for
the detection of recurrent/residual disease after
radiotherapy in a prospective study including 74 pa-
tients.6 The standard of reference was histopatholo-
gy of the resected specimen in 62% and a mean
follow-up of 34 months in 38% of patients. Sensi-
tivity, specificity, PPV, and NPV of PET/DWIMR im-
aging were 97%, 92%, 92.5%, and 97% per
patient and 93.0%, 93.5%, 91%, and 95% per
lesion, respectively. Agreement between imaging-
based and pathologic T stage of resected tumors
was excellent (kappa5 0.84, P < .001).

The interpretation of multiparametric data is chal-
lenging, especially ifmorphologicMR imaging,DWI,
and PET findings are discrepant. On the one hand,
this diagnostic uncertainty can lead to unnecessary
biopsy in irradiated tissues; on the other hand, it can
lead to delay in diagnosis if a “wait and see” policy is
adopted. Our study may show a way to manage
concordant/discordant readingsaspositiveconcor-
dant results with PET, DWI, and MR imaging corre-
sponded to recurrent tumors in 97.5% of cases
and discordant results corresponded to benign le-
sions in 87% of cases, respectively6 (Fig. 18). This
approach could also be applied in indeterminate/
suspicious FDG-PET/CT readings in which case a
highADC revealed byDWIMR imaging or the typical
aspect of fibrosis on T2W and DWI images would
lead to a wait and see policy instead of biopsy
(Fig. 19). Moreover, based on a series of 69 HNSCC
posttreatment patients, Ashour and colleagues
have recently reported that the addition of DWI fea-
tures and T2 signal to the AmericanCollege of Radi-
ology (ACR) Neck Imaging Reporting and Data
System (NI-RADS) criteria for the primary tumor
site enhanced specificity, sensitivity, PPV, NPV,
and NI-RADS accuracy.107

Applying the NI-RADS criteria16 to PET/MR im-
aging in a retrospective study including 46patients,
Patel and colleagues reported that PET/MR imag-
ing scores showed a strong association with treat-
ment failure for the primary site, neck lymph nodes,
and combined sites, and the AUCs of PET/MR im-
aging scores versus treatment failure were 0.864 to
0.987, P < .001.108 The investigators, therefore,
concluded that PET/MR imaging has an excellent
discriminatory performance for treatment out-
comes of HNSCC when NI-RADS is applied.

An increasing number of studies using PET, DWI,
DCE perfusion, and MR imaging parameters have
recently investigated which imaging-based bio-
markers could predict disease-free survival and
overall survival in HNSCCpatients.109–112 A detailed
discussion isbeyond thescopeof thisarticle.Never-
theless, the published results suggest that models
basedoncombined imagingbiomarkersandclinical
characteristics (eg, plasma EBV or HPV status) are
very promising and may aid in planning the optimal
personalized treatment strategy.
SUMMARY

Although the published research regarding the use
of PET/MR imaging in HNSCC is relatively sparse,
it seems that PET/MR imaging has at least a
similar diagnostic performance as PET/CT for
locoregional tumor staging with advantages in
certain scenarios. Such scenarios include the
assessment of tumor invasion in anatomic areas,
which affect resectability, for example, the prever-
tebral space or PNS. As in most publications, the
MR imaging part of PET/MR imaging has been
mainly used for anatomic orientation, the full po-
tential of PET/MR imaging has not been used,
and only very few studies have incorporated multi-
parametric information so far. Nevertheless, multi-
parametric FDG PET/MR imaging with DWI has
been shown to have a high diagnostic accuracy
for the detection of residual/recurrent HNSCC af-
ter radiotherapy with an excellent agreement be-
tween imaging-based and pathologic T stage.
FDG PET/MR imaging also has an excellent and
similar diagnostic performance as FDG PET/CT
for detecting distant metastases and distant sec-
ond primary cancers in HNSCC patients. Imaging
biomarkers derived from multiparametric PET/
MR imaging with diffusion and perfusion se-
quences hold promise in predicting patient
outcome and, therefore, in planning the optimal
personalized treatment strategy. DL-based auto-
matic tumor segmentation using PET data has
become a reality, and PET/MR imaging may facil-
itate DL-based segmentation tasks incorporating
multimodality information.
CLINICS CARE POINTS



thickening, nodularity, nerve enhancement
and fat pad obliteration, and denervation of
muscles. PNS can be detected on FDG PET if tu-
mors are FDG avid or in the presence of exten-
sive PNS; nevertheless, correlation with MR
imaging improves its assessment.

� The combination of morphologic MR imag-
ing, DWI, and PET criteria allows improved
detection of posttreatment recurrent HNSCC
and distinction from inflammatory edema
and fibrosis. Inflammatory edema can have
variable FDG uptake and variable enhance-
ment after IV administration of contrast ma-
terial. On T2W images, inflammatory edema
has a high signal intensity, and diffusivity is
increased on DWI; therefore, ADC values are
high. Fibrosis (scar tissue) can display variable
FDG uptake and variable enhancement after
IV administration of contrast material.
Fibrosis has a very low signal intensity on
T2W images and a low ADC.

� In HNSCC, both PET/MR imaging and PET/CT
have a similar diagnostic performance for
the detection of distant metastases and
distant second primary cancers. Both benign
and malignant lesions can show FDG uptake;
however, SUVmean and SUVmax values are
significantly higher in malignant lesions. As
high FDG uptake can also cause false positive
assessments, especially in the mediastinum,
biopsy is necessary in certain situations.
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