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Abstract. This paper presents an overview of the third edition of the
HEad and neCK TumOR segmentation and outcome prediction (HECK-
TOR) challenge, organized as a satellite event of the 25th International
Conference on Medical Image Computing and Computer Assisted Inter-
vention (MICCAI) 2022. The challenge comprises two tasks related to
the automatic analysis of FDG-PET/CT images for patients with Head
and Neck cancer (H&N), focusing on the oropharynx region. Task 1 is
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the fully automatic segmentation of H&N primary Gross Tumor Vol-
ume (GTVp) and metastatic lymph nodes (GTVn) from FDG-PET/CT
images. Task 2 is the fully automatic prediction of Recurrence-Free Sur-
vival (RFS) from the same FDG-PET/CT and clinical data. The data
were collected from nine centers for a total of 883 cases consisting of
FDG-PET/CT images and clinical information, split into 524 training
and 359 test cases. The best methods obtained an aggregated Dice Simi-
larity Coefficient (DSCagg) of 0.788 in Task 1, and a Concordance index
(C-index) of 0.682 in Task 2.

Keywords: Challenge · Medical imaging · Head and neck cancer ·
Segmentation · Radiomics · Deep learning · Machine learning

1 Introduction: Research Context

Automatic analysis of multimodal images using machine/deep learning pipelines
is of increasing interest. In particular, in the context of oncology, the automa-
tion of tumors and lymph nodes delineation can be used for diagnostic tasks
(tumor detection), automated staging and quantitative assessment (e.g. lesion
volume and total lesion glycolysis), as well as radiotherapy treatment plan-
ning and fully automated outcome prediction. This automation presents mul-
tiple advantages over manual contouring (faster, more robust and reproducible).
Concerning patient-level outcome prediction, multimodal image analysis with
machine learning can be used for predictive/prognostic modeling (e.g. response
to therapy, prediction of recurrence and overall survival) where image-derived
information can be combined with clinical data. These models can be exploited
as decision-support tools to improve and personalize patient management.

In this context, the HEad and neCK TumOR segmentation and outcome
prediction (HECKTOR) challenge was created in 2020 as a satellite event of
MICCAI, with a focus on Head and Neck (H&N) cancer and the use of Positron
Tomography Emission / Computed Tomography (PET/CT) images. The first
edition of the challenge included a single task, dedicated to the automatic delin-
eation of the primary tumor in combined PET/CT images [6,33]. The second
edition (2021) added a second task dedicated to the prediction of Progression-
Free Survival (PFS), as well as additional cases from new clinical centers [3]. For
the present 2022 (third) edition, the dataset was further expanded (from 425
cases/6 centers to 883 cases/9 centers), and the tasks were updated. For this
2022 edition, Task 1 included the detection and delineation of both the primary
tumors and lymph nodes from entire images (no bounding box of the oropharyn-
geal region was provided as opposed to previous editions), thus achieving a fully
automatic segmentation of all pathological targets in the H&N region. Detect-
ing and segmenting both the primary tumor and lymph node volumes opens the
avenue to automated TN staging, as well as H&N prognostic radiomics modeling
based not only on primary Gross Tumor Volumes (GTVp), but also metastatic
lymph nodes (GTVn). The endpoint for Task 2, previously PFS, was change. In
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the new edition, Recurrence-Free Survival (RFS) was used, and we focused on
automatic prediction (no reference contours were provided for the test cases).

While HECKTOR was one of the first challenges to address tumor segmen-
tation in PET/CT images, other challenges are being organized on this topic.
In particular, the AutoPET challenge was organized for the first time in 2022
at MICCAI1. The objective of the AutoPET challenge was tumor lesion detec-
tion and segmentation in whole-body PET/CT [12]. Based on PET images only,
a first challenge on tumor segmentation was previously proposed at MICCAI
2016 [16]. The dataset included both simulated and clinical images. Besides chal-
lenges, reviews of general automatic tumor segmentation can be found in [17,37].

Whereas an exponentially increasing number of studies were published on
oncological outcome prediction based on PET/CT radiomics [18], challenges
addressing this type of task are far less popular than the ones focusing on seg-
mentation tasks. Overall, large-scale validation of both tumor segmentation and
radiomics based on PET/CT remains insufficiently addressed, highlighting the
importance of this third edition of the HECKTOR challenge.

The paper is organized as follows. Section 2 describes the dataset used for
each task. Details concerning evaluation metrics, participation and participants’
approaches are detailed in Sects. 3 and 4 for Tasks 1 and 2, respectively. The
main findings of the challenges are discussed in Sect. 5 while the conclusions
of this 2022 edition are summarized in Sect. 6. Appendix 1 contains additional
general information and Appendix 2 details PET/CT image acquisitions.

2 Dataset

2.1 Mission of the Challenge

Biomedical Application
The participating algorithms target the following fields of application: diagno-
sis, prognosis and research. The participating teams’ algorithms were designed
for either or both image segmentation (i.e., classifying voxels as either primary
tumor, metastatic lymph node or background) and RFS prediction (i.e., ranking
patients according to a predicted risk of recurrence). The main clinical motiva-
tions for these tasks are introduced in Sect. 1.

Cohorts. As suggested in [28], we refer to the patients from whom the image
data were acquired as the challenge cohort. The target cohort2 comprises patients
received for initial staging of H&N cancer.

The clinical goals are two-fold; the automatically segmented regions can be
used as a basis for (i) treatment planning in radiotherapy, (ii) further investiga-
tions to predict clinical outcomes such as overall survival, disease-free survival,
1 https://autopet.grand-challenge.org/, as of November 2022.
2 The target cohort refers to the subjects from whom the data would be acquired in the

final biomedical application. It is mentioned for additional information as suggested
in BIAS [28], although all data provided for the challenge are part of the challenge
cohort.

https://autopet.grand-challenge.org/
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response to therapy or tumor aggressiveness. The RFS outcome prediction task
does not necessarily have to rely on the output of the segmentation task. In
the former case (i), the regions will need to be further refined or extended for
optimal dose delivery and control. The challenge cohort3 includes patients with
histologically proven H&N cancer who underwent radiotherapy treatment plan-
ning. The data were acquired from nine centers (seven for the training, three
for the test, including one center present in both sets) with variations in the
scanner manufacturers and acquisition protocols. The data contain PET and
CT imaging modalities as well as clinical information including center, age, gen-
der, weight, tobacco and alcohol consumption, performance status, HPV status,
and treatment (radiotherapy only or additional chemotherapy and/or surgery).
A detailed description of the annotations is reported in Sect. 2.2.

Target Entity. The region from which the image data were acquired (called
data origin), varied from the head region only to the whole body, and may vary
across modalities. Unlike in previous editions [3,33], we provided the data as
acquired, without providing automatic bounding-boxes locating the oropharynx
regions [4]. The predictions were evaluated on the entire domain of the CT
images.

2.2 Challenge Dataset

Data Source
The data were acquired from nine centers as detailed in Table 1. It consists of
FDG-PET/CT images of patients with H&N cancer located in the orophar-
ynx region. The devices and imaging protocols used to acquire the data are
described in Table 2. Additional information about image acquisition can be
found in Appendix 2.

Training and Test Case Characteristics
The training data comprise 524 cases from seven centers (CHUM, CHUS, CHUP,
CHUV, HGJ, HMR and MDA). Only patients with complete responses (i.e.
disappearance of all signs of local, regional and distant lesions) after treatment
are used for Task 2, i.e. 488 cases. The test data contain 359 cases from two other
centers CHB and USZ, and from MDA also present in the training set. Similarly,
only patients with complete responses after treatment are used for Task 2, i.e.
339 cases. Examples of PET/CT images of each center are shown in Fig. 1. Each
case includes aligned CT and PET images, a mask with values 1 for GTVp, 2
for GTVn, and 0 for background (for the training cases) in the Neuroimaging
Informatics Technology Initiative (NIfTI) format, as well as patient information
(e.g. age, gender) and center.

Participants who wanted to use additional external data for training were
asked to also report results using only the HECKTOR data and discuss differ-
ences in the results, but none used external data in this edition.
3 The challenge cohort refers to the subjects from whom the challenge data were

acquired.
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Table 1. List of the hospital centers in Canada (CA), United States (US), Switzerland
(CH) and France (FR) and number of cases, with a total of 524 training and 359 test
cases (not all used for task 2, as specified in the rightmost column).

Center Split # cases

Task 1 Task 2

CHUM: Centre Hospitalier de l’Université de Montréal, Montréal, CA Train 56 56

CHUS: Centre Hospitalier Universitaire de Sherbooke, Sherbrooke, CA Train 72 72

HGJ: Hôpital Général Juif, Montréal, CA Train 55 55

HMR: Hôpital Maisonneuve-Rosemont, Montréal, CA Train 18 18

CHUP: Centre Hospitalier Universitaire Poitiers, FR Train 72 44

CHUV: Centre Hospitalier Universitaire Vaudois, CH Train 53 46

MDA: MD Anderson Cancer Center, US Train 198 197

Total Train 524 488

CHB: Centre Henri Becquerel, FR Test 58 38

MDA: MD Anderson Cancer Center, US Test 200 200

USZ: UniversitätsSpital Zürich, SW Test 101 101

Total Test 359 339

Table 2. List of scanners used in the nine centers. Discovery scanners are from GE
Healthcare, Biograph from Siemens, and Gemini from Phillips.

HGJ CHUS HMR CHUM CHUV CHUP MDA USZ CHB Total

Discovery STE 18 56 133 52 258

Discovery RX 128 24 152

Discovery ST 55 84 139

Biograph 40 72 2 74

Gemini GXL 16 72 1 73

Discovery 690 53 10 8 71

Discovery 710 11 58 69

Discovery HR 2 12 14

Discovery LS 8 3 11

Biograph 64 7 7

Discovery MI 5 5

Biograph 6 1 1 2

Other 2 2

Discovery IQ 1 1

Discovery 600 1 1

Biograph 128 1 1

Biograph 20 1 1

Biograph 16 1 1
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Fig. 1. Case examples of 2D sagittal slices of fused PET/CT images from each of
the nine centers, showing the variety of fields of view. The CT (grayscale) window in
Hounsfield unit is [−140, 260] and the PET window in SUV is [0, 12], represented in a
“hot” colormap.

Task 1 - Ground Truth
Original annotations were performed differently depending on the centers.

– Training set CHUV, CHUS, HGJ, HMR: Contours defining the GTVp and
GTVn were drawn by an expert radiation oncologist in a radiotherapy treat-
ment planning system. 40% (80 cases) of the training radiotherapy contours
were directly drawn on the CT of the PET/CT scan and thereafter used for
treatment planning. The remaining 60% (121) of the training radiotherapy
contours were drawn on a different CT scan dedicated to treatment plan-
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ning and were then registered to the FDG-PET/CT scan reference frame
using intensity-based free-form deformable registration with the software
MIM (MIM software Inc., Cleveland, OH). For the training cases, the original
number of annotators is unknown.

– Training set CHUV: The GTVp and GTVn were manually drawn on each
FDG-PET/CT by a single expert radiation oncologist.

– Training set CHUP: the metabolic volume of primary tumors was automati-
cally determined with the PET segmentation algorithm Fuzzy Locally Adap-
tive Bayesian (FLAB) (Hatt et al. 2009) and was then edited and corrected
manually by a single expert based on the CT image, for example, to correct
cases where the PET-defined delineation included air or non-tumoral tissues
in the corresponding CT.

– Training and test sets MDA: Contours available from radiotherapy planning
(contoured on the CT image, using a co-registered PET as the secondary
image to help physicians visualize the tumor) were refined according to the
guidelines mentioned below.

– Test set USZ: The primary tumor was separately segmented in the CT and
PET images. The CT segmentation was performed manually. In all cases,
two radiation oncologists, both having more than 10 years of experience, were
involved in the process. Contours were later post-processed for the presence
of metal artifacts to exclude non-tumor-related effects. If a certain tumor
slice was affected by any artifacts, the entire tumor contour was erased from
that slice. Tumors with more than 50% of volume not suitable for the anal-
ysis were not included in the study. Additionally, the voxels outside of soft
tissue Hounsfield unit (HU) range (20 HU to 180 HU) were discarded. The
tumor in the PET image was auto-segmented using a gradient-based method
implemented in MIMVISTA (MIM Software Inc., Cleveland, OH).

– Test set CHB: For each patient, the GTVp and GTVn were manually drawn
by using the software PET VCAR (GE Healthcare) on each FDG-PET/CT
by senior nuclear medicine physicians using adaptive thresholding with visual
control using merged PET and CT information.

Quality controls were performed by experts on all the datasets (training and
test) to ensure consistency in ground-truth contours definition. The experts re-
annotated them, when necessary, to the real tumoral volume (often smaller than
volumes delineated for radiotherapy). A shared cloud environment (MIM Cloud
Software Inc.) was used to centralize the contouring task and homogenize anno-
tation software. For cases without original GTVp or GTVn contours for radio-
therapy, the experts annotated the cases using PET/CT fusion and N staging
information. A guideline was developed by the board of experts for this quality
control, reported in the following. Cases with misregistrations between PET and
CT were excluded. The annotation guidelines are reported in the following.

Guidelines for primary tumor annotation in PET/CT images. The guidelines
were provided to the participants during the challenge.
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Oropharyngeal lesions are contoured on PET/CT using information from PET
and unenhanced CT acquisitions. The contouring includes the entire edges of
the morphologic anomaly as depicted on unenhanced CT (mainly visualized
as a mass effect) and the corresponding hypermetabolic volume, using PET
acquisition, unenhanced CT and PET/CT fusion visualizations based on auto-
matic co-registration. The contouring excludes the hypermetabolic activity
projecting outside the physical limits of the lesion (for example in the lumen
of the airway or on the bony structures with no morphologic evidence of local
invasion).
Standardized nomenclature per AAPM TG-263: GTVp.
Special situations: Check clinical nodal category to make sure you excluded
nearby FDG-avid and/or enlarged lymph nodes (e.g. submandibular, high
level II, and retropharyngeal) In case of tonsillar fossa or base of tongue
fullness/enlargement without corresponding FDG avidity, please review the
clinical datasheet to rule out pre-radiation tonsillectomy or extensive biopsy.
If so, this case should be excluded.

Guidelines for nodal metastases tumor annotation in PET/CT images.
Lymph nodes are contoured on PET/CT using information from PET and
unenhanced CT acquisitions. The contouring includes the entire edges of the
morphologic lymphadenopathy as depicted on unenhanced CT and the cor-
responding hypermetabolic volume, using PET acquisition, unenhanced CT
and PET/CT fusion visualizations based on automatic co-registration for all
cervical lymph node levels.
Standardized nomenclature for lymph node ROI: GTVn.
The contouring excludes the hypermetabolic activity projecting outside the
physical limits of the lesion (for example on the bordering bony, muscular or
vascular structures).

Task 2 - Ground Truth
The patient outcome ground truths for the prediction task were collected in
patients’ records as registered by clinicians during patient follow-ups. These
include locoregional failures and distant metastases. The time t=0 is set to the
end date of radiotherapy treatment.

Data Preprocessing Methods
No preprocessing was performed on the images to reflect the diversity of clinical
data and to leave full flexibility to the participants. However, we provided various
snippets of code to load, crop and resample the data, as well as to evaluate the
results on our GitHub repository4. This code was provided as a suggestion to
help the participants and to maximize transparency (for the evaluation part).
The participants were free to use other methods.

Sources of Errors. A source of error originates from the degree of subjectivity
in the annotations of the experts [13,33]. Another source of error is the dif-
4 https://github.com/voreille/hecktor, as of November 2022.

https://github.com/voreille/hecktor
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ference in the re-annotation between the centers used in HECKTOR 2020 and
the one added in HECKTOR 2021/2022. In HECKTOR 2020, the re-annotation
was checked by only one expert while for HECKTOR 2021/2022 three experts
participated in the re-annotation. Moreover, the softwares used were different.

Finally, another source of error comes from the lack of CT images with a
contrast agent for a more accurate delineation of the primary tumor.

Institutional Review Boards
Institutional Review Boards (IRB) of all participating institutions permitted the
use of images and clinical data, either fully anonymized or coded, from all cases
for research purposes only. More details are provided in Appendix 1.

3 Task 1: Segmentation

3.1 Methods: Reporting of Challenge Design

A summary of the information on the challenge organization is provided in
Appendix 1, following the BIAS recommendations.

Assessment Aim. The assessment aim for the segmentation task is to evalu-
ate the feasibility of fully automatic GTVp and GTVn segmentation for H&N
cancers via the identification of the most accurate segmentation algorithm.

Assessment Method. The performance is measured by the aggregated Dice Sim-
ilarity Coefficient (DSCagg) between prediction and manual expert annotations.
The DSCagg is computed as followed.

DSCagg =
2
∑

i |Ai ∩ Bi|∑
i |Ai| + |Bi| , (1)

with Ai and Bi respectively the ground truth and predicted segmentation for
image i, where i spans the entire test set. This metric was employed in [5].

DSC measures volumetric overlap between segmentation results and annota-
tions. It is a good measure of segmentation for imbalanced segmentation prob-
lems, i.e. the region to segment is small as compared to the image size. DSC is
commonly used in the evaluation and ranking of segmentation algorithms and
particularly tumor segmentation tasks. However, the DSC can be problematic,
for instance, for cases without ground truth volume, where a single false nega-
tive results in a DSC of 0. GTVn is not present in all images and, if present,
there can be more than one volume. The predictions can also include zero, one
or more volumes. The proposed DSCagg is well-suited to evaluate this type of
task. DSCagg will be computed separately for GTVp and GTVn to account
for the smaller number of GTVn. The goal is to identify segmentation methods
that perform well on the two types of GTV. A drawback of this metric is that
standard deviation (or any statistics) across patients cannot be measured.
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3.2 Results: Reporting of Segmentation Task Outcome

Participation. As of September 5, 2022 (submission deadline), the number
of registered teams for the challenge (regardless of the tasks) was 121. Each
team could submit up to three valid submissions. In order to ensure this limit
of submissions, only one participant per team was accepted on grand-challenge
and allowed to submit results. By the submission deadline, we had received 67
valid submissions for Task 1, i.e. not accounting for invalid submissions such as
format errors. This participation was lower than last year’s challenge [3].

In this section, we present the algorithms and results of participants in Task
1 with an accepted paper [1,9,10,21,22,24,25,29,30,32,34–36,38–41,43,45–47,
49]. A full list of results can be seen on the leaderboard5.

Segmentation: Summary of Participants’ Methods. This section sum-
marizes the approaches proposed by all teams for the automatic segmentation
of the primary tumor and metastatic lymph nodes (Task 1). The paragraphs
are ordered according to the official ranking, starting with the winners of Task
1. Only a brief description of the methods is provided, highlighting the main
particularity, without listing the most commonly used training procedures and
parameters such as ensembling, losses etc.

In [32], Myronenko et al. used a SegResNet [31] (a 3D U-Net-like architec-
ture with additional auto-encoder and deep supervision) relying on the MONAI6

platform, adapted to the specificity of the task (e.g. PET/CT, cropping) with the
Auto3DSeg7 system to automate the parameter choice. The main parts of the
pipeline involve image normalization, tumor region detection (specific to HECK-
TOR 2022), isotropic re-sampling, 5-fold cross-validation, and model ensembling.
The tumor region detection is based on relative anatomical positions. Random
3D crops are used for training, centered on the foreground classes with proba-
bilities of 0.45 for tumor, 0.45 for lymph nodes and 0.1 for background.

In [41], Sun et al. employed a coarse-to-fine approach with a cascade of mul-
tiple networks. 1) The head is first located in CT with a 3D U-Net. 2) A coarse
segmentation of GTVp and GTVn regions is performed with a nnU-Net on
PET/CT. The ground truth for this step is taken as the center of the GTVp
and GTVn. The output is a smaller bounding box centered on the region of
interest. 3) Fine segmentation on PET-CT in the finer bounding box is carried
out by an ensemble of five nnU-Nets and five nnFormers (trained with cross-
validation) using a 3D SE-norm U-Net to generate the final segmentations of
GTVp and GTVn.

In [22], Jiang et al. employed an off-the-shelf nnU-NET with simple pre-
and post-processing rules. For training, images are cropped around the GTVp.
A post-processing outlier removal is based on minimum volume requirements
and distance between predicted GTVp and GTVn volumes. Interestingly, an

5 https://hecktor.grand-challenge.org/evaluation/challenge/leaderboard/.
6 https://github.com/Project-MONAI/MONAI.
7 https://monai.io/apps/auto3dseg.

https://hecktor.grand-challenge.org/evaluation/challenge/leaderboard/
https://github.com/Project-MONAI/MONAI
https://monai.io/apps/auto3dseg
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integration into a web based platform is proposed for the visualization of the
segmentation results, including the segmentation for Organs At Risk (OAR),
outside the scope of this challenge.

In [34], Rebaud et al. used a simple nnU-Net-based approach with minor
adaptations to the task. In particular, images are resampled to 2× 2 × 2 mm3,
and the training is performed on the entire training set after 5-fold and bagging.
Median filtering is used to smooth the resampled masks in the CT resolution.

In [35], Salahuddin et al. proposed a 3D U-Net with a channel-wise atten-
tion mechanism, grid-attention gates, carefully designed residual connections and
dedicated post-processing to remove outlier volumes on the z-axis. The method is
trained using 5-fold cross-validation with extensive data augmentation. Uncom-
monly, input images are resampled to a non-isotropic 1× 1 × 3 mm3 voxel size.

In [45], Wang et al. proposed a base nnU-Net combined with a Transfiner
(Vision Transformer, ViT-like model with reduced computation and memory
costs) to refine the output, based on the assumption that most segmentation
errors occur at the tumor boundaries. The Transfiner treats inputs in a similar
manner to a ViT, but uses an octree decomposition of multiple layers of interest
to select relevant patches instead of densely patchifying the entire image.

In [46], Wang et al. performed a simple segmentation based on nnU-Net. No
region detection is used as pre-processing of the segmentation model. A dense
patch-based approach (128 × 128 × 128) is used with a post-processing based on
the distance between GTVp and GTVn to eliminate GTVn volumes that are
too far from the GTVp (>150 mm).

In [21], Jain et al. compared several segmentation models: nnU-Net (2D/3D),
MNet and SwinU-Net architectures. Images are first resampled to 1 × 1 × 3 mm
spacing and then registered altogether using the case CHUM-021 as a reference.
Further cropping based on the location of the center of the skull was used for
input of all model families.

In [9], Chen et al. built an ensemble of three 3D nnU-Nets trained with
different loss functions (Dice + focal loss, Dice + top K loss and cross entropy).
The models only take as input the CT images. The PET images are used in a
final post-processing step where the U-Nets predictions are penalized based on
SUV in the PET.

In [39], Rezaeijo et al. used the following multi-step pipeline. First, an organ
localizer module is combined with a 3D U-Net for refined organ segmentation,
then a 3D ResU-Net is used to segment GTVp and GTVn. The input of the
pipeline is a weighted combination of registered PET and CT images.

In [29], Meng et al. proposed a segmentation network based on a U-Net
architecture and a cascaded survival network based on a DenseNet architecture.
The two networks are jointly optimized with a segmentation loss and a survival
loss. The pipeline jointly learns to predict the survival risk scores of patients and
the segmentation masks of tumor regions. It extends the already proposed deep
multi-task survival DeepMTS model to a radiomics-enhanced deep multi-task
framework.
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In [25], Lyu proposes to use a 3D nnU-Net model optimized with the Dice
Top-K loss function. An ensemble of the five models obtained from cross-
validation is used to produce the GTVp and GTVn segmentation masks.

In [49], Xu et al. applied the nnU-Net framework to the cropped PET/CT
images. The PET/CT images are cropped according to the oropharyngeal region
which was found relative to the brain detected on the PET images. Two different
types of nnU-Nets were used, a “vanilla” nnU-Net and another version that was
fine-tuned on the test (referred to as PLL nnU-Net). A combination of Dice and
cross-entropy losses was used to train the networks.

In [47], Wang et al. first employed a 2D Retina U-Net [20] to localize the
H&N region, followed by a 3D U-Net for the segmentation of GTVp/GTVn.

In [36], Salmanpour et al. trained a Cascade-Net [42] (a cascade of a detection
module followed by a segmentation module) on a weighted fusion of PET and
CT images.

In [10], Chu et al. used a Swin U-NETR [15] with the encoder pretrained
by self-supervision on a large CT dataset. The model is trained with cropped
images using the bounding-box extractor provided by the organizers [4].

In [38], Shi et al. used a 3D U-Net-based architecture with inputs of multi-
ple resolutions inputted at different depths in the model. Four resolutions are
obtained by randomly cropping the images to a fixed size and resampling them
to four dimensions (1443 and repeatedly halved). The model is trained without
a validation set.

In [24], La Greca et al. finetuned two pretrained 3D U-Nets on fused PET-
CT images. Both models are pretrained with chest CT images and finetuned
for GTVp and GTVn segmentation, respectively. The H&N region is detected
semi-automatically (i.e. corrected if necessary) based on the head geometry on
the CT image.

In [1], Ahamed et al. proposed to use a 2D ResNet50 pretrained on ImageNet
as an encoder in a U-Net-like architecture for slice-wise segmentation, trained
without data augmentation. The 3D predictions are obtained on the test set by
stacking the 2D predictions.

In [30], Müller et al. performed the localization of the H&N region using an
analysis of the PET and CT signals on the z-axis, followed by a simple 3D U-
Net for precisely locating the region. Patches were then used in a standard 3D
U-Net approach based on the winners of previous editions [19,48], followed by
classification for differentiating GTVt and GTVn using Support Vector Machines
(SVM).

In [43], Thamawita et al. used a cascade of 2D U-Nets (named TriUnet) in
order to merge CT-based predictions and PET-based predictions into a single
output prediction.

In [40], Srivastava et al. compared three approaches, two based on explicit
multi-scale, previously published by the authors, and one based on Swin
UNETR [15], a Swin ViT originally designed for brain tumor segmentation.
Despite relatively high performance on validation, the generalization to the test
data is not optimal with DSCagg values around 0.5.
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Results. The results are reported in Table 3. The results from the participants
range from an average DSCagg of 0.48949 to 0.78802. Myronenko et al. [32]
obtained the best overall results with an average DSCagg of 0.78802, respec-
tively 0.80066 on the GTVp and 0.77539 on the GTVn. The best GTVn seg-
mentation was obtained by Sun et al. [41] with a DSCagg of 0.77604. Examples
of segmentation results are shown in Fig. 2.

Table 3. Results of Task 1. The best out of three possible submissions is reported for
each eligible team. Full list of results available at https://hecktor.grand-challenge.org/
evaluation/challenge/leaderboard/.

Team DSCagg GTVp DSCagg GTVn mean DSCagg rank

NVAUTO [32] 0.80066 0.77539 0.78802 1

SJTU426 [41] 0.77960 0.77604 0.77782 2

NeuralRad [22] 0.77485 0.76938 0.77212 3

LITO [34] 0.77700 0.76269 0.76984 4

TheDLab [35] 0.77447 0.75865 0.76656 5

MAIA [45] 0.75738 0.77114 0.76426 6

AIRT [46] 0.76689 0.73392 0.75040 8

AIMers [21] 0.73738 0.73431 0.73584 9

SMIAL [9] 0.68084 0.75098 0.71591 10

Ttest [39] 0.74499 0.68618 0.71559 11

BDAV USYD [29] 0.76136 0.65927 0.71031 12

junma [25] 0.70906 0.69948 0.70427 13

RokieLab [49] 0.70131 0.70100 0.70115 14

LMU [47] 0.74460 0.65610 0.70035 15

TECVICO Corp [36] 0.74586 0.65069 0.69827 16

RT UMCG [10] 0.73741 0.65059 0.69400 17

HPCAS [38] 0.69786 0.66730 0.68258 18

ALaGreca [24] 0.72329 0.61341 0.66835 19

Qurit [1] 0.69553 0.57343 0.63448 20

VokCow [30] 0.59424 0.54988 0.57206 21

MLC [43] 0.46587 0.53574 0.50080 22

M&H lab NU [40] 0.51342 0.46557 0.48949 23

Average 0.72351 0.68682 0.70517

https://hecktor.grand-challenge.org/evaluation/challenge/leaderboard/
https://hecktor.grand-challenge.org/evaluation/challenge/leaderboard/
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Fig. 2. Examples of results of the winning team (NVAUTO [32]). The automatic seg-
mentation results (light) and ground truth annotations (dark) are displayed on an
overlay of 2D slices of CT (left) images and PET (right). GTVn is in red and GTVp in
blue. CT are clipped between [–140,260] HU and PET images are between [0,5] SUV.

4 Task 2: Outcome Prediction

The second task of the challenge is the prediction of patient outcome, namely
RFS.
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4.1 Methods: Reporting of Challenge Design

Due to the connection between the two tasks, this second task was carried out on
the same dataset as the first one, exploiting both the available clinical informa-
tion and the multimodal FDG-PET/CT images. Some patients, however, were
not used in the second task (see Table 1) because they did not have a complete
response to treatment, which is a pre-requisite for the definition of RFS.

The clinical factors included center, age, gender, weight, tobacco and alco-
hol consumption, performance status, HPV status, and treatment (radiotherapy
only or additional chemotherapy and/or surgery). The information regarding
tobacco and alcohol consumption, performance status, HPV status and treat-
ment was available only for some patients. The weight was missing in six training
and two test cases, and was estimated to 75 kg to compute the Standard Uptake
Values (SUV).

Assessment Aim. The chosen clinical endpoint to predict was RFS, i.e. the
time t to reappearance of a lesion or to appearance of new lesions (local, regional
or distant), censoring deaths. Only patients with complete responses were con-
sidered, and death was censored. In the training set, participants were provided
with the survival endpoint to predict, censoring and time-to-event between treat-
ment and event (in days). t = 0 was defined as the last day of radiotherapy.

Assessment Method. Challengers were asked to submit a CSV file containing
the test patient IDs with the outputs of the model as a predicted risk score
anti-concordant with the RFS in days. The performance of the predicted scores
was evaluated using the Concordance index (C-index) [14] on the test data.
The C-index quantifies the model’s ability to provide an accurate ranking of the
survival times based on the computed individual risk scores, generalizing the area
under the ROC curve. It can account for censored data and represents the global
assessment of the model discrimination power. The final ranking was based on
the best C-index value obtained on the test set out of the maximum of three
submissions per team. The C-index computation is based on the implementation
in the Lifelines library [11].

4.2 Results: Reporting of Challenge Outcome

Participation. As mentioned for the first task, the number of registered teams
for the challenge (regardless of the tasks) was 121. Each team could submit up
to three valid submissions. By the submission deadline, we had received 44 valid
submissions for Task 2, i.e. not including invalid submissions e.g. due to format
errors. All participants of Task 2 also participated in Task 1.

Outcome Prediction: Summary of Participants’ Methods. In this
section, we describe the algorithms and results of participants in Task 2 [9,25,26,
29,30,34–36,43,46,47,49]. A full list of results can be seen on the leaderboard8.
8 https://hecktor.grand-challenge.org/evaluation/challenge/leaderboard/.

https://hecktor.grand-challenge.org/evaluation/challenge/leaderboard/
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In [34], Rebaud et al. relied on the Pyradiomics [44] software to extract 93
standard (shape, intensity, textures) radiomics features from the merged GTVp
and GTVn delineated volumes (i.e., the result from their task 1 participation) on
PET and CT images. In addition to this merged mask, they generated a number
of additional masks (re-segmentation with various thresholds, dilation, etc.),
which resulted in more than 2400 features per patient. Clinical features were also
added, as well as three handcrafted features: the number of tumor masses, the
number of lymph nodes, and a binary variable indicating whether the scan was
a whole-body scan or included only the H&N region. Each feature was evaluated
with the C-index and all pairs of features were also evaluated for their correlation.
A novel binary-weighted method was used to assign a binary (-1 / +1) value to
each feature, depending on its variation with recurrence time. Finally, the risk
was calculated as the mean across all selected feature z-scores weighted by their
binary weight. In order to produce a more robust estimate, multiple ensembled
models were trained on a random sampling of the training data, also with a
randomly selected number of features. A higher number of models led to better
performance, and 105 models were used on the test set. To evaluate a model on
the train set, a two-hundred-fold Monte Carlo cross-validation was used. The
ensemble model thus contained three hyperparameters: the number of features
randomly drawn for building a model, and the minimum value of C-index and
Pearson correlation coefficient threshold to select features among the ones that
were randomly drawn. To reduce the risk of overfitting, three bagged models
were evaluated in the train and test sets, increasing gradually the number of
hyperparameter sets tested, with 10, 100 or 1000 hyperparameter sets, resulting
in test C-index values of 0.670, 0.673 and 0.682 respectively.

In [29], Meng et al. proposed an approach similar to the multi-task model
trained jointly for both segmentation and prediction task, already proposed in
the 2021 edition. The segmentation part is described in Section 3.2. Regard-
ing the outcome prediction task, the model contains a deep learning component,
trained on the input PET/CT images, that extracts deep features simultaneously
as it generates the segmentation mask. It also contains a standard radiomics com-
ponent where Pyradiomics features are extracted from the aggregated mask con-
taining the primary tumor and the lymph nodes, as determined by the segmen-
tation part of the pipeline. Finally, clinical variables, deep features and standard
radiomics features from the segmentation mask are concatenated in the survival
model. The author reported an increased performance in the training set with
additional information, with C-index of 0.66, 0.68 and 0.69 relying on clinical
variables, standard radiomics and automatic radiomics respectively, whereas the
performance of deepMTS only was 0.71, which increased to 0.73 and 0.77 when
adding clinical factors then standard radiomics. These three last submissions
obtained C-index values of 0.64, 0.65 and 0.68 on the test set. The difference
in performance compared with the model ranked 1st is negligible, however, the
model is more complex.

In [47], Wang et al. implemented a standard radiomics framework exploiting
nnU-Net segmentation, followed by extraction of radiomics features in both PET
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and CT images (a single mask containing both GTVp and GTVn, using Pyra-
diomics), followed by feature selection based on univariate analysis, redundancy
through correlation, and finally Cox Proportional Hazard (PH) models building
through 5-fold CV for each input (clinical, PET, CT) and a combination of the
corresponding risk scores. Regarding the clinical variables, missing values were
not imputed but instead coded as a third value. The final model combining risk
scores from all three inputs (clinical, PET, CT) obtained a C-index of 0.67 in
the test set.

In [26], a standard radiomics approach and a deep learning approach were
implemented and compared. For the radiomics approach, features were extracted
from a delineated volume containing both the GTVp and the GTVn in a single
mask, obtained (in both training and test sets) using the segmentation model
of task 1. The authors chose to extract shape and intensity metrics from both
modalities, and textural features from the CT component only. Features were
extracted with Pyradiomics, using a fixed bin width discretization. Radiomics
features were then selected and evaluated in a univariate analysis, as well as
using correlation to remove redundant ones. Regarding clinical variables, they
were selected based on empirical experience as well as univariate analysis and,
in the end, only weight and HPV status were retained. The missing HPV values
were not imputed but assigned a third category. A Cox PH model using the
selected clinical and hand-crafted radiomics features was then trained. The deep-
learning model based on a ResNet and the loss function of DeepSurv [23], trained
with data augmentation and oversampling, was implemented to also include the
clinical features and the hand-crafted radiomics features selected in the radiomics
pipeline. Feature selection, model training and validation (for radiomics and
deep learning) were all carried out through a 5-fold CV (based on centers, MDA
and HMR centers always in the training). The models evaluated on the test
set were obtained by averaging the models obtained in each fold. In the test
set, a C-index of 0.668 was obtained using the radiomics approach, whereas the
DL model (ensemble of DL and radiomics) obtained 0.646, lower than in the
validation (>0.75).

In [49], Xu et al. proposed a standard machine learning approach extracting
conventional (volume, SUV, TLG, number of nodes etc.) and radiomics features
(SERA package [7]) from both PET and CT modalities. The clinical variables
were not exploited in the prognostic models. Cox models were trained using
either the conventional features alone, the radiomics alone (with ComBat har-
monization based on centers), or the combination of conventional and radiomics
features (without harmonization). Other combinations were not studied due to
the limited number of test submissions. The best result in the test set was
obtained by the conventional model relying on Total Lesion Glycolysis (TLG)
and the number of nodes features with a C-index of 0.658, whereas the two more
complex models led to lower C-index of 0.645 and 0.648.

In [43], Thambawita et al. proposed at first two approaches, one relying
on clinical data only, the other combining clinical variables with basic features
from the segmentations (volume and z-extent). In both cases, they used Random
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Forest. In a third approach, they combined clinical variables with image data
using XGBoost. In addition, they estimated the kidney function of the patients
and included it as an additional feature, achieving a C-index of 0.656.

In [30], Müller et al. built upon the winning solution of the past challenge
(‘Deep Fusion V2’) that combines a CNN for extracting deep PET and CT fea-
tures with a Multi-Layer Perceptron (MLP) trained using a multi-class logistic
regression loss (MTLR) for survival tasks. It extends this approach by combin-
ing the features (deep, shape and intensity features) extracted from multiple
image patches (rather than a single patch) via graph convolution. The result-
ing embeddings are concatenated with clinical information before the final MLP
for MTLR loss training. This multi-patch approach uses as inputs the PET/CT
fused images cropped at the segmented tumor centroids. It was trained without
data augmentation and was compared to Cox PH and Weibull accelerated failure
time models relying on clinical variables and basic tumor descriptors only, the
original Deep Fusion V2 models as well as combinations of these. Although the
new proposed model performed the best in the validation set (C-index 0.75) it
failed in the test set (<0.4). The best result in the test set was obtained with
the Weibull model (0.64).

In [25], Lyu et al. proposed a method relying on the AutoGluon9 frame-
work, which consists in an ensemble of 12 models whose outputs are stacked
in several successive layers (here 2 layers). The inputs of the models were stan-
dard radiomics features calculated from both the PET and CT images using
Pyradiomics. Only three clinical variables were considered (gender, age and
chemotherapy). This approach obtained a C-index of 0.639 on the test set.

In [46], Wang et al. trained a ResNet model to predict RFS using, as separate
channels, the images (PET only, CT only, or PET/CT), with or without the
segmentation mask (output of task 1 using a Retina U-Net) through a 3-fold
cross-validation. All investigated combinations led to C-index of 0.64–0.70, with
the best model obtained using the PET only (0.70). Its prediction performance
on the test set (using an averaging of the three models obtained with 3-fold CV)
was 0.635.

In [35], Salahuddin et al. focused mainly on the segmentation task (see
Sect. 3.2). Nonetheless, they evaluated the prognostic value of some features
extracted from the segmentation masks, namely tumor and lymph node largest
volumes and number of lymph nodes through a 5-fold cross-validation. A com-
bination of these three features obtained a C-index of 0.627 on the test set.

In [9], Chen et al. extracted standard radiomics features with Pyradiomics
from all the individual lesions predicted by the method of Task 1 (compared to
most other challengers who chose to consider the whole segmentation mask). The
position (center of mass) of each connected component was also concatenated in
the vector of radiomics features. Only clinical variables without missing informa-
tion were used. Prediction of RFS was achieved by training a multiple-instance
neural network in order to handle multiple lesions per patient. Amongst various

9 https://auto.gluon.ai/stable/index.html.

https://auto.gluon.ai/stable/index.html
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training strategies (5-fold CV or the entire training set), the best was using the
entire training set, reaching a C-index of 0.619 on the test set.

In [36], Salmanpour et al. extracted deep features from the bottleneck of an
auto-encoder fed with PET and CT images fused via a weighted technique. These
features were selected with mutual information and fed to a random survival
forest trained through a 5-fold CV and grid search, obtaining a C-index of 0.59
on the test set.

Results. The results are reported in Table 4.

Table 4. Results of Task 2. The best out of three possible submissions is reported for
each eligible team. Full list of results available at https://hecktor.grand-challenge.org/
evaluation/challenge/leaderboard/. The predictions of the MLC team were concordant
with the time (prediction of days), instead of a risk score. Their C-index results on the
leaderboard were, therefore, < 0.5 and they were ranked last on this task. Other teams
made this mistake for their first submission, not reported here because we keep only
the best results.

Team C-index rank

LITO [34] 0.68152 1

BDAV USYD [29] 0.68084 2

AIRT [46] 0.67257 3

RT UMCG [26] 0.66834 4

RokieLab [49] 0.65817 5

MLC [43] 0.65598 6

VokCow [30] 0.64081 7

junma [25] 0.63896 8

LMU [47] 0.63536 9

TheDLab [35] 0.6305 10

SMIAL [9] 0.61877 11

TECVICO Corp [36] 0.59042 12

Average 0.64769

The participants’ results range from a C-index of 0.59042 to 0.68152, obtained
by Rebaud et al. [34].

5 Discussion: Putting the Results into Context

5.1 Outcomes and Findings

Task 1: Automatic Segmentation of GTVp and GTVn
The participation in this task was slightly lower than in the previous edition [3].

https://hecktor.grand-challenge.org/evaluation/challenge/leaderboard/
https://hecktor.grand-challenge.org/evaluation/challenge/leaderboard/
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This reduction could be partly due to the limit of three submissions instead of
five, as well as the increased difficulty of the task arising from (i) not provid-
ing bounding-boxes locating the oropharynx region, and (ii) the need to provide
segmentation of both GTVp and GTVn. The quality of the methods and their
descriptions, however, was improved. Various successful methods were proposed
to detect the oropharynx region prior to inputting data into DL models. Without
surprise, the best results were obtained with ensembles of 3D U-Nets with care-
ful design choices for pre and post-processing. The use of transformers increased
as compared to the previous editions, without clear benefit on the test per-
formance, but achieving very competitive performance. The winner algorithm
(NVAUTO [32]) also performed very well on other MICCAI challenges with
adaptations to the tasks.

Besides, a surprisingly high performance was obtained in the segmentation
of GTVn (DSCagg =0.687 on average and 0.776 for the best), which one may
consider more challenging than the primary tumor due to the large variation in
location, size and numbers.

Finally, the reported results are not directly comparable with those of 2021
because of the increased complexity (bounding boxes not provided), the different
test set (with results highly influenced by tumor sizes), and the different metrics
(DSCagg of GTVp and GTVn in 2022 vs average DSC on GTVp in 2021). If we
valuate the GTVp DSC in the winner of 2022 to overcome the metric difference,
we obtain a DSC of 0.7056 on the 2022 test set, vs 0.7785 in 2021, highlighting
the increased complexity of the present edition and the fact that the algorithms
are not optimized solely for GTVp segmentation.

Task 2: RFS Prediction
Similarly to Task 1, the participation was lower than last year’s challenge which
could be due to the increased complexity of the task. In 2021, we observed a
majority of deep-learning based pipelines amongst the top results of the pre-
diction task. Four out of the top 5 results relied on deep learning techniques
to extract information from PET/CT images and combine it with clinical data
to predict PFS, and only one relied on the extraction of engineered radiomics
features, combined through ML algorithms. In the current 2022 edition, most of
the best results were obtained through the use of standard radiomics features
extraction combined with ML modeling, except the second-ranked team (with
almost equal performance as the first rank) that relied on a deep learning setting
complemented by standard radiomics features. The winner of the 2021 edition
ended up ranked 6th in 2022, building on its previously developed purely DL
framework. It should also be emphasized that although the number of training
and test cases was more than double the number of the previous edition, the
overall performance of the predictive model seemed to reach a plateau around
C-index 0.7, not better than in 2021. However, a direct comparison between the
two editions is challenging since the data is also more heterogeneous (with addi-
tional centers being included), the segmentation task was strongly different and
more complex, and the clinical endpoint to predict was slightly different (RFS
instead of PFS). Of note, most challengers decided to extract features from a
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single mask aggregating the primary tumor and the lymph nodes, which may
have biased the prognostic value of some of the features, which may have been
more relevant when extracted from each lesion type separately.

Finally, no correlation was observed between the results of tasks 1 and 2,
i.e. participants who obtained better results in task 2 were not associated with
better results in task 1, with a Pearson correlation of 0.065.

5.2 Limitations of the Challenge

Although important efforts were provided by the multidisciplinary consortium
to take attention to details in all research aspects that the HECKTOR challenge
is addressing, several limitations remain.

The dataset itself presents several limitations. The contours were drawn based
on the PET/(unenhanced)CT fusion, although other methods such as MRI with
gadolinium or contrast CT are the gold standard to obtain the true contours for
radiation oncology. Since the target clinical application is radiomics, however,
the precision of the contours is not as important as for radiotherapy planning.
Another limitation is due to the variability in the ground truth annotations.
Despite the provided guidelines and the quality checks, some heterogeneity in
the annotation methods (e.g. in USZ test collection only, removing lesions with
metal artifact n and not in other centers, resegmentation in a given HU range)
used by the experts and the experts’ profiles were observed. Besides our efforts
to unify the contours, this led to a remaining significant source of noise in the
labelled data used for training.

Concerning Task 1, the segmentation of GTVp and GTVn, one limitation is
the segmentation metric which, despite improving the DSC for the task at hand
using the aggregated DSC (see Sect. 3.1), is highly biased towards volume sizes.
In the future, we could approach the task as a detection problem, using e.g. the
refined Dice proposed by Carass et al. [8].

One limitation of Task 2, the prediction of RFS, was the heterogeneity of the
patient cohort in terms of HPV status, age groups and other prognostic factors.
To mitigate the impact of this limitation, we provided these clinical parameters
to the participants, but missing value rates remained high for some variables
(e.g. 36% missing values for HPV status). We also worked on the unification of
the RFS definition across all centers (see “Assessment aim” in Sect. 4.1), as we
realized that even the definition of RFS itself varied across centers or medical
specialties. Besides, the treatment information was relatively homogeneous up
to the type, but not how exactly the RT was delivered and the combination with
chemo (concomitant or subsequent). This is however realistic regarding clinical
practice. While the above-mentioned limitations are commonly admitted in the
research community on outcome prediction, we think that focusing on clean
populations is key to improving the models’ performance when one can afford it
in terms of sample size.

Finally, this challenge suffers from other known limitations such as the bias
of the Dice with respect to tumor size (large tumors obtain higher Dice scores),
and limited ranking robustness [27]. The latter two aspects were investigated
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for the previous editions [2,33] highlighting a high impact of tumor size on the
Dice score and a relatively stable ranking for both segmentation and outcome
prediction evaluated with bootstrapping. We expect similar findings for the two
tasks of the 2022 edition.

6 Conclusions

This paper presented an overview of the HECKTOR 2022 challenge, dedicated
to the automatic analysis of PET/CT images and clinical data of patients with
H&N cancer. The tasks proposed in this third edition were (1) Segmentation
of primary tumors and metastatic lymph nodes, (2) prediction of patient out-
come, namely RFS. The dataset was largely increased in comparison to previous
editions, with a total of nine centers and 883 cases. The tasks were also more
difficult, in particular with the necessary step of detection of the H&N region
prior to further analyses, and the addition of GTVn segmentation to Task 1.
Good participation was observed in both tasks, from top research teams across
the world proposing a wide variety of methods reported in the 23 quality papers
in this volume.

In conclusion, the segmentation results are potentially good enough for clin-
ical use. In future work, we plan to rate the automatic segmentations by experts
to assess their quality. Regarding the RFS task, while predictions are better
than random, the observed performances suggest that they cannot yet be used
clinically to base decisions upon in order to orient treatment options.
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Appendix 1: Challenge Information

In this appendix, we list additional important information about the challenge
as suggested in the BIAS guidelines [28].

Challenge Name
HEad and neCK TumOR segmentation and outcome prediction challenge
(HECKTOR) 2022

Organizing Team
The authors of this paper.
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Life Cycle Type
A fixed submission deadline was set for the challenge results.

Challenge Venue and Platform
The challenge is associated with MICCAI 2022. Information on the challenge
is available on the website, together with the link to download the data, the
submission platform and the leaderboard10.

Participation Policies

(a) Task 1: Algorithms producing fully-automatic segmentation of the test cases
were allowed. Task 2: Algorithms producing fully-automatic RFS risk score
prediction of the test cases were allowed.

(b) The data used to train algorithms was not restricted. If using external data
(private or public), participants were asked to also report results using only
the HECKTOR data.

(c) Members of the organizers’ institutes could participate in the challenge but
were not eligible for awards.

(d) Task 1: The award was 500 euros, sponsored by Aquilab. Task 2: The award
was 500 euros, sponsored by Bioemtech. Best paper award: The award was
500 euros, sponsored by Siemens Healthineers Switzerland.

(e) Policy for results announcement: The results were made available on the
grand-challenge leaderboard and the best three results of each task were
announced publicly. Once participants submitted their results on the test
set to the challenge organizers via the challenge website, they were consid-
ered fully vested in the challenge, so that their performance results (without
identifying the participant unless permission was granted) became part of
any presentations, publications, or subsequent analyses derived from the
challenge at the discretion of the organizers.

(f) Publication policy: This overview paper was written by the organizing team’s
members. The participating teams were encouraged to submit a paper
describing their method. The participants can publish their results sepa-
rately elsewhere when citing the overview paper, and (if so) no embargo will
be applied.

Submission Method
Submission instructions are available on the website11 and are reported in the
following.

Task 1: Segmentation outputs should be provided as a single label mask per
patient (1 for the predicted GTVp, 2 for GTVn, and 0 for the background) in
.nii.gz format. The resolution of this mask should be the same as the original
CT resolution. The participants should pay attention to saving NIfTI volumes
with the correct pixel spacing and origin with respect to the original reference
10 https://hecktor.grand-challenge.org/.
11 https://hecktor.grand-challenge.org/Submit/.

https://hecktor.grand-challenge.org/
https://hecktor.grand-challenge.org/Submit/
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frame. The NIfTI files should be named [PatientID].nii.gz, matching the patient
names, e.g. CHB-001.nii.gz and placed in a folder. This folder should be zipped
before submission. A notebook with a dummy submission example can be found
on our github repository12.

Task 2: Results should be submitted as a CSV file containing the patient
ID as “PatientID” and the output of the model (continuous) as “Prediction”.
An individual output should be anti-concordant with the RFS in days (i.e., the
model should output a predicted risk score). If you have a concordant output (e.g.
predicted RFS days), you can simply submit your estimate times -1. A notebook
with a dummy submission example can be found on our github repository13.

Participants were allowed three valid submissions per task. The best result
was reported in this paper for each task/team.

Challenge Schedule
The schedule of the challenge, including modifications, is reported in the follow-
ing.

– the release date of the training cases: June 01 June 07 2022
– the release date of the test cases: Aug. 01 2022
– the submission date(s): opens Aug. 26 closes Sept. 02 Sept. 05 2022 (23:59

UTC-10)
– paper abstract submission deadline: Sept. 02 Sept. 05 2022 (23:59 UTC-10)
– full paper submission deadline: Sept. 08 2022 (23:59 UTC-10)
– associated satellite event: Sept. 22 2022

Ethics Approval
Montreal: CHUM, CHUS, HGJ, HMR data (training): The ethics approval was
granted by the Research Ethics Committee of McGill University Health Center
(Protocol Number: MM-JGH-CR15-50).

CHUV data (training): The ethics approval was obtained from the Commis-
sion cantonale (VD) d’éthique de la recherche sur l’être humain (CER-VD) with
protocol number: 2018-01513.

CHUP data (training): The fully anonymized data originates from patients
who consent to the use of their data for research purposes.

MDA data (training and test): The ethics approval was obtained from the
University of Texas MD Anderson Cancer Center Institutional Review Board
with protocol number: RCR03-0800.

USZ data (test): The ethics approval was related to the clinical trial
NCT01435252 entitled “A Phase II Study In Patients With Advanced Head
And Neck Cancer Of Standard Chemoradiation And Add-On Cetuximab”.

CHB data (test): The fully anonymized data originates from patients who
consent to the use of their data for research purposes.
12 https://github.com/voreille/hecktor/blob/master/notebooks/

example seg submission2022.ipynb.
13 https://github.com/voreille/hecktor/blob/master/notebooks/

example surv submission2022.ipynb.

https://github.com/voreille/hecktor/blob/master/notebooks/example_seg_submission2022.ipynb
https://github.com/voreille/hecktor/blob/master/notebooks/example_seg_submission2022.ipynb
https://github.com/voreille/hecktor/blob/master/notebooks/example_surv_submission2022.ipynb
https://github.com/voreille/hecktor/blob/master/notebooks/example_surv_submission2022.ipynb
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Data Usage Agreement
The participants had to fill out and sign an end-user-agreement, available on the
grand-challenge platform, in order to be granted access to the data.

Code Availability
The evaluation software was made available on our github page14. The partici-
pating teams were encouraged to disclose their code.

Conflict of Interest
No conflict of interest applies. Fundings are specified in the acknowledgments.
Only the organizers had access to the test cases’ ground truth contours.

Appendix 2: Image Acquisition Details

HGJ: For the PET portion of the FDG-PET/CT scan, a median of 584 MBq
(range: 368–715) was injected intravenously. After a 90-min uptake period of
rest, patients were imaged with the PET/CT imaging system (Discovery ST,
GE Healthcare). Imaging acquisition of the head and neck was performed using
multiple bed positions with a median of 300 s (range: 180–420) per bed position.
Attenuation corrected images were reconstructed using an ordered subset expec-
tation maximization (OSEM) iterative algorithm and a span (axial mash) of 5.
The FDG-PET slice thickness resolution was 3.27 mm for all patients and the
median in-plane resolution was 3.52 × 3.52 mm2 (range: 3.52–4.69). For the CT
portion of the FDG-PET/CT scan, an energy of 140 kVp with an exposure of 12
mAs was used. The CT slice thickness resolution was 3.75 mm and the median
in-plane resolution was 0.98 × 0.98 mm2 for all patients.

CHUS: For the PET portion of the FDG-PET/CT scan, a median of 325
MBq (range: 165–517) was injected intravenously. After a 90-min uptake period
of rest, patients were imaged with the PET/CT imaging system (Gemini GXL
16, Philips). Imaging acquisition of the head and neck was performed using
multiple bed positions with a median of 150 s (range: 120–151) per bed position.
Attenuation corrected images were reconstructed using a LOR-RAMLA iterative
algorithm. The FDG-PET slice thickness resolution was 4 mm and the median
in-plane resolution was 4 × 4 mm2 for all patients. For the CT portion of the
FDG-PET/CT scan, a median energy of 140 kVp (range: 12–140) with a median
exposure of 210 mAs (range: 43–250) was used. The median CT slice thickness
resolution was 3 mm (range: 2–5) and the median in-plane resolution was 1.17
× 1.17 mm2 (range: 0.68–1.17).

HMR: For the PET portion of the FDG-PET/CT scan, a median of 475
MBq (range: 227–859) was injected intravenously. After a 90-min uptake period
of rest, patients were imaged with the PET/CT imaging system (Discovery STE,
GE Healthcare). Imaging acquisition of the head and neck was performed using
multiple bed positions with a median of 360 s (range: 120–360) per bed posi-
tion. Attenuation corrected images were reconstructed using an ordered subset
14 https://github.com/voreille/hecktor.

https://github.com/voreille/hecktor
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expectation maximization (OSEM) iterative algorithm and a median span (axial
mash) of 5 (range: 3–5). The FDG-PET slice thickness resolution was 3.27 mm
for all patients and the median in-plane resolution was 3.52 × 3.52 mm2 (range:
3.52–5.47). For the CT portion of the FDG-PET/CT scan, a median energy of
140 kVp (range: 120–140) with a median exposure of 11 mAs (range: 5–16) was
used. The CT slice thickness resolution was 3.75 mm for all patients and the
median in-plane resolution was 0.98 × 0.98 mm2 (range: 0.98–1.37).

CHUM: For the PET portion of the FDG-PET/CT scan, a median of 315
MBq (range: 199–3182) was injected intravenously. After a 90-min uptake period
of rest, patients were imaged with the PET/CT imaging system (Discovery STE,
GE Healthcare). Imaging acquisition of the head and neck was performed using
multiple bed positions with a median of 300 s (range: 120–420) per bed posi-
tion. Attenuation corrected images were reconstructed using an ordered subset
expectation maximization (OSEM) iterative algorithm and a median span (axial
mash) of 3 (range: 3–5). The median FDG-PET slice thickness resolution was 4
mm (range: 3.27–4) and the median in-plane resolution was 4 × 4 mm2 (range:
3.52–5.47). For the CT portion of the FDG-PET/CT scan, a median energy of
120 kVp (range: 120–140) with a median exposure of 350 mAs (range: 5–350)
was used. The median CT slice thickness resolution was 1.5 mm (range: 1.5–3.75)
and the median in-plane resolution was 0.98 × 0.98 mm2 (range: 0.98–1.37).

CHUV: The patients fasted at least 4h before the injection of 4 Mbq/kg
of(18F)-FDG (Flucis). Blood glucose levels were checked before the injection of
(18F)-FDG. If not contra-indicated, intravenous contrast agents were adminis-
tered before CT scanning. After a 60-min uptake period of rest, patients were
imaged with the PET/CT imaging system (Discovery D690 ToF, GE Health-
care). First, a CT (120 kV, 80 mA, 0.8-s rotation time, slice thickness 3.75
mm) was performed from the base of the skull to the mid-thigh. PET scanning
was performed immediately after acquisition of the CT. Images were acquired
from the base of the skull to the mid-thigh (3 min/bed position). PET images
were reconstructed by using an ordered-subset expectation maximization itera-
tive reconstruction (OSEM) (two iterations, 28 subsets) and an iterative fully
3D (DiscoveryST). CT data were used for attenuation calculation.

CHUP: The acquisition began after 6 h of fasting and 60± 5 min after injec-
tion of 3 MBq/kg of 18F-FDG (421± 98 MBq, range 220–695 MBq), imaged
with the PET/CT imaging system (Biograph mCT 40 ToF, Siemens). Non-
contrast-enhanced CT images were acquired for attenuation correction (120
kVp, Care Dose® current modulation system) with an in-plane resolution of
0.853 × 0.853 mm2 and a 5 mm slice thickness. PET data were acquired using
2.5 min per bed position routine protocol and images were reconstructed using
a CT-based attenuation correction and the OSEM-TrueX-TOF algorithm (with
time-of-flight and spatial resolution modeling, 3 iterations and 21 subsets, 5 mm
3D Gaussian post-filtering, voxel size 4 × 4×4 mm3).

MDA: For the PET portion of the FDG-PET/CT scan, a median of 401 MBq
(range: 327–266) was injected intravenously. After a 90-min uptake period of
rest, patients were imaged with the PET/CT imaging system (Multiple hybrid
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PET/CT scanner devices). Image acquisition of the head and neck was per-
formed using multiple bed positions with a median of 180 s (range: 90–300) per
bed position. Attenuation corrected images were reconstructed using an ordered
subset expectation maximization (OSEM) iterative algorithm (2 iterations, 18–
24 subsets, 5mm Gaussian filter). The median FDG-PET slice thickness was
3.27 mm (range: 2.99–5) and the median in-plane resolution was 5.46× 5.46 mm2

(range: 2.73 × 2.73–5.46 × 5.46). For the CT portion of the FDG-PET/CT scan,
a median energy of 120 kVp (range: 100–140) with a median exposure of 185
mAs (range: 10–397) was used. The median CT slice thickness resolution was
3.75mm (range: 2.99–5) and the median in-plane resolution was 0.98× 0.98 mm2

(range: 0.48 × 0.48–2.734 × 2.734).
USZ: For PET imaging, an activity of 178–513 MBq was administered intra-

venously 1h prior to the scan and after the measurement of blood sugar level.
Images were acquired with the multiple hybrid PET/CT scanner devices. In the
retrospective cohort, 2D or 3D iterative image reconstruction was used, whereas
the images of the validation cohort were reconstructed with a 3D algorithm.

CHB: Head and neck PET-CT images were acquired on a GE710 PET/CT
device 90 min (±5 min) after the injection of approximately 3 MBq/kg of FDG.
PET and CT acquisition parameters were adapted to the patient’s habitus with
the patient in the radiotherapy treatment position with a contention mask. For
the unenhanced CT portion of the FDG-PET/CT scan, an energy of 120 kVp
with an exposure of 25 mAs was used. Attenuation corrected images were recon-
structed using an ordered subset expectation maximization (OSEM) iterative
algorithm (VPFX, 2 iterations and 23 subsets) and a span (axial mash) of 5.
The FDG-PET slice thickness resolution was 3.27 mm for all patients and the
median in-plane resolution was 2.73 × 2.73 mm2. The CT slice thickness reso-
lution was 2.5 mm and the median in-plane resolution was 0.98 × 0.98 mm2 for
all patients.
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