
Received: 10 April 2023 Revised: 16 May 2023 Accepted: 19 June 2023

DOI: 10.1002/mp.16615

R E S E A R C H A RT I C L E

Information fusion for fully automated segmentation of
head and neck tumors from PET and CT images

Isaac Shiri1 Mehdi Amini1 Fereshteh Yousefirizi2 Alireza Vafaei Sadr3,4

Ghasem Hajianfar1 Yazdan Salimi1 Zahra Mansouri1 Elnaz Jenabi5

Mehdi Maghsudi6 Ismini Mainta1 Minerva Becker7 Arman Rahmim2,8

Habib Zaidi1,9,10,11

1Division of Nuclear Medicine and Molecular
Imaging, Geneva University Hospital, Geneva,
Switzerland

2Department of Integrative Oncology, BC
Cancer Research Institute, Vancouver, British
Columbia, Canada

3Institute of Pathology, RWTH Aachen
University Hospital, Aachen, Germany

4Department of Public Health Sciences,
College of Medicine, The Pennsylvania State
University, Hershey, USA

5Research Center for Nuclear Medicine,
Shariati Hospital, Tehran University of Medical
Sciences, Tehran, Iran

6Rajaie Cardiovascular Medical and
Research Center, Iran University of Medical
Sciences, Tehran, Iran

7Service of Radiology, Geneva University
Hospital, Geneva, Switzerland

8Department of Radiology and Physics,
University of British Columbia, Vancouver,
Canada

9Geneva University Neurocenter, Geneva
University, Geneva, Switzerland

10Department of Nuclear Medicine and
Molecular Imaging, University of Groningen,
University Medical Center Groningen,
Groningen, Netherlands

11Department of Nuclear Medicine, University
of Southern Denmark, Odense, Denmark

Correspondence
Habib Zaidi, Division of Nuclear Medicine and
Molecular Imaging, Geneva University
Hospital, CH-1211 Geneva, Switzerland.
Email: habib.zaidi@hcuge.ch

Abstract
Background: PET/CT images combining anatomic and metabolic data provide
complementary information that can improve clinical task performance. PET
image segmentation algorithms exploiting the multi-modal information available
are still lacking.
Purpose: Our study aimed to assess the performance of PET and CT image
fusion for gross tumor volume (GTV) segmentations of head and neck cancers
(HNCs) utilizing conventional,deep learning (DL),and output-level voting-based
fusions.
Methods: The current study is based on a total of 328 histologically confirmed
HNCs from six different centers. The images were automatically cropped to a
200 × 200 head and neck region box,and CT and PET images were normalized
for further processing. Eighteen conventional image-level fusions were imple-
mented. In addition,a modified U2-Net architecture as DL fusion model baseline
was used. Three different input, layer, and decision-level information fusions
were used. Simultaneous truth and performance level estimation (STAPLE)
and majority voting to merge different segmentation outputs (from PET and
image-level and network-level fusions), that is, output-level information fusion
(voting-based fusions) were employed. Different networks were trained in a 2D
manner with a batch size of 64. Twenty percent of the dataset with stratification
concerning the centers (20% in each center) were used for final result reporting.
Different standard segmentation metrics and conventional PET metrics,such as
SUV, were calculated.
Results: In single modalities, PET had a reasonable performance with a Dice
score of 0.77 ± 0.09, while CT did not perform acceptably and reached a Dice
score of only 0.38 ± 0.22.Conventional fusion algorithms obtained a Dice score
range of [0.76–0.81] with guided-filter-based context enhancement (GFCE) at
the low-end, and anisotropic diffusion and Karhunen–Loeve transform fusion
(ADF), multi-resolution singular value decomposition (MSVD), and multi-level
image decomposition based on latent low-rank representation (MDLatLRR) at
the high-end. All DL fusion models achieved Dice scores of 0.80. Output-level
voting-based models outperformed all other models, achieving superior results
with a Dice score of 0.84 for Majority_ImgFus,Majority_All,and Majority_Fast.A
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mean error of almost zero was achieved for all fusions using SUVpeak,SUVmean
and SUVmedian.
Conclusion: PET/CT information fusion adds significant value to segmentation
tasks, considerably outperforming PET-only and CT-only methods. In addi-
tion, both conventional image-level and DL fusions achieve competitive results.
Meanwhile, output-level voting-based fusion using majority voting of several
algorithms results in statistically significant improvements in the segmentation
of HNC.
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1 INTRODUCTION

Radiation therapy is a standard treatment approach for
head and neck cancer (HNC); therefore, it is crucial to
use non-invasive, specialized techniques for improved
diagnosis and focused therapies based on tumor
phenotype.1 The evaluation of HNC has greatly profited
from combined [18F]fluoro-2-deoxyglucose positron-
emission tomography ([18F]-FDG PET) and computed
tomography (CT) imaging.Due to the combined assess-
ment of anatomy and metabolism, PET/CT holds a
prominent role in the detection and characterization of
HNCs locally, at the nodal level and for detecting distant
metastases.2,3 [18F]FDG uptake in HNC, as a biomarker
of glucose metabolism, is typically higher at disease
sites than in normal tissues. However, due to partial vol-
ume effects, inherent tumor heterogeneity and inferior
PET’s spatial resolution compared to CT and MR imag-
ing, assessment of deep submucosal tumor spread,
which is essential for tumor staging and treatment plan-
ning remains imprecise. With the help of CT, abnormal
[18F]FDG uptake is identified more accurately4 not only
for primary tumor staging and follow-up of HNC but
also for the development and evaluation of diagnostic
and prognostic models based on HNC segmentation.
Medical image segmentation aims to extract regions
with distinct anatomical and/or functional features and
categorizing pixels (voxels) according to their texture,
grayscale, and other factors.5 On one hand, segmen-
tation can help radiation oncologists plan treatments
more effectively by reducing tumor delineation time and
by enhancing observer reproducibility.6 On the other
hand, the usefulness of radiomics for prognosis, diag-
nosis, and treatment assessment is undisputable, and
segmentation is an essential first step.7–11 Furthermore,
radiomics analysis relies on engineered feature extrac-
tion within specified lesions or volumes of interest (VOIs)
for robust and reproducible modeling.12 Therefore, effi-
cient solutions for the automatic segmentation of Gross
Tumor Volume of primary tumors (GTVt) are of major
interest.

Since manual segmentation is challenging, time-
consuming,and prone to error,deep learning (DL)-based
automatic segmentation appears as an attractive alter-

native for automated tumor segmentation.12,13 However,
the segmentation task remains challenging due to the
complexity of PET/CT imaging and the high cost of
processing 3D data.14 Convolutional neural networks
(CNNs)-based automated tumor segmentation meth-
ods have been presented as a possible solution.15,16

Although missing small lesions, some approaches
have demonstrated excellent results despite requir-
ing the development of significant computational
resources.15,16 However, before employing CNN results
for additional analysis, verification and correction by
an imaging expert is required.15,16 This necessitates a
comprehensive visual examination of each 3D [18F]-
FDG PET/CT scan and identifying lesions the algorithm
may have missed.5 As a result, creating a pipeline that
would facilitate this process of checking and adjusting
is highly desirable in clinical practice.5

Although CT images offer detailed anatomical
information, it can be challenging to determine the
precise tumor extent given the relatively low lesion-
to-background ratio in infiltrating tumors and tumors
with large areas of necrosis, which are the hallmarks
of HNC.17,18 Algorithms using complementary data
from multi-modality acquisitions, including quantitative
assessments based on PET, in particular, standardized
uptake values (SUVs) have been proposed to increase
the accuracy of tumor segmentation.19 Integrating the
information from different modalities can be performed
at several levels.20 The first level includes fusing scans
from different modalities before entering the networks
by using conventional image fusion techniques. The
next level comprises feeding the network with different
modalities simultaneously and combining the informa-
tion from these modalities at different stages of the
learning process, that is, input layers, network levels,
and output layers of the network architecture. The final
strategy includes combining the decision of different
models using staple or voting methods. When consid-
ering both functional and anatomical disease extent,
any algorithms that analysis imaging modality indepen-
dently are inherently limited. In contrast, techniques that
combine data from two modalities often ‘prioritize’ data
from one of the two modalities for various tasks using a
priori knowledge of different modality features (i.e., PET
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and CT). Alternatively, data may be combined using a
fusion model incorporating the two modalities.

Image fusion aims to merge information from different
scenes or perspectives into a single data while ideally
preserving important information, reducing information
loss, and preventing emerging artifacts and misinfor-
mation on fused images.21 Furthermore, medical image
fusion often leads to generating new patterns and tex-
tures, which are otherwise not visible to experts.22

Hence, higher performance for the detection of abnor-
malities, their classification, segmentation, and estima-
tion of improved prognosis can be achieved.23 Conven-
tional PET/CT segmentation fusion techniques include
hybrid techniques as suggested by Bagci et al.4 simul-
taneously delineating ROIs in PET, PET/CT, PET/MR
imaging, and fused MRI/PET/CT segmentation using a
random walk segmentation with an automated similarity-
based seed selection process. In order to classify
solitary pulmonary nodules using CT textural features
and PET metabolic features,Zhao et al.24 recommended
combining dynamic thresholding, watershed segmen-
tation, and support vector machine. Ju et al.,25 Yang
et al.,26 and Song et al.27 used PET and CT regions to
characterize tumors with spatial and visual consistency.
Han et al.28 segmented tumors from PET/CT scans
using a Markov Random Field formulation with specific
energy terms for both multimodalities.

Different scenarios were proposed for using the com-
plementary information of multi-modality images based
on fusion at different levels of DL-based (input-level,
feature-level, and decision-level) segmentation in multi-
modality imaging.29,30 Zhong et al.,31 used a graph-cut
approach to combine U-Net training results of PET and
CT. Li et al.32 described a variational model to segment
lung cancers using PET image and a CNN-derived CT
probability map.Kumar et al.33 suggested that the appro-
priate fusion of multi-modality images should be learned
from the underlying visual properties of a single modal-
ity, while DL techniques provided the most advanced
feature learning,selection,and extraction techniques.By
learning to combine complementary information from
PET/CT images,Kumar et al.33 proposed the creation of
a fusion by CNN that explicitly quantifies fusion feature
weight in each modality.

The purpose of the current study was: (i) to evalu-
ate several information fusion approaches, including
conventional, DL and output level fusion, and (ii) to
investigate the efficacy of fusion at various levels for
HNC GTV segmentation on PET/ CT images.

2 MATERIALS AND METHODS

2.1 PET/CT data acquisition and
description

The data used in this study included 328 histologi-
cally confirmed head and neck (HN) cancer patients,

undergone PET/CT scans in six different clinics (dataset
#1–6) with 23, 32, 34, 59, 81, and 99 patients, respec-
tively.Patient demographics and imaging characteristics
(image acquisition protocols, scanner specifications,
image reconstruction, and correction algorithms) of the
datasets are presented in Table 1. More in-depth details
of the dataset can be found in.2,16,34–41 For training the
models, the whole dataset was divided into segments of
70%,10%,and 20% (by preserving the ratios of centers)
for training, validation, and testing, respectively.

2.2 Manual image segmentation and
pre-processing

The primary tumor was delineated on PET/CT images
for radiation therapy purposes.16,34-41 However, before
enrolling in this study, an experienced nuclear medicine
physician edited/verified segmentations for errors, such
as missing slices or airway lumens. The revised tumor
segmentations were used as the ground truth. Metal
artifacts in CT images (Hounsfield Unit (HU) maps)
were corrected using Iterative Metal Artifact Reduc-
tion (iMAR) algorithm.42 PET images were converted to
Standardized Uptake Value (SUV) maps. All the scans
were resized to 1 × 1 × 1 mm3 voxels, then automati-
cally cropped to 200 × 200 grids containing HN regions.
This automatic procedure was performed by identifying
the starting slice of the HN region using a DL-based
lung segmentation (helped to identify the slice above
the lung apex) and body contouring using PET inten-
sity thresholding. For a better contrast in CT images, HU
maps were clipped to [−1024, 1200]. Then, both CT and
PET images were normalized. All pre-processing steps
were conducted automatically to enable fully automated
HN tumor segmentations on PET/CT images.

2.3 Conventional image fusion

A variety of image fusion methods have been devel-
oped in the previous decades. Image fusion methods
can be categorized based on the level of fusion
(pixel-level, feature-level, decision-level), fusion domain
(spatial domain or transform domain), application
(multi-modal,multi-focus,multi-exposure,etc.),and algo-
rithm type. Regarding the backbone algorithm, image
fusion methods can be classified into seven groups:
DL approach, multi-scale transform-based, sparse
representation-based, subspace-based, saliency-
based, hybrid models, and other miscellaneous
algorithms.

To cover all groups, we fused PET and CT images
using 18 different methods, including most recent
state-of -the-art methods. We investigated the following
methods: anisotropic diffusion and Karhunen–Loeve
transform fusion (ADF),43 cross bilateral filter (CBF),44

guided filtering fusion (GFF),45 guided-filter-based
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context enhancement (GFCE),46 hybrid multi-scale
decomposition (Hybrid-MSD),47 multi-scale guided
filtered-based fusion (MGFF),48 hybrid multi-scale
decomposition fusion method using guided image fil-
tering (HMSD-GF),46 multi-resolution singular value
decomposition (MSVD),49 and wavelet fusion,50 one
subspace-based group method, fourth order partial dif-
ferential equations (FPDE),51 two saliency-based group
methods (a multi-level image decomposition method
based on latent low-rank representation (MDLatLRR),52

and two-scale image fusion (TIF),53 four hybrid methods
(ratio of low-pass pyramid with sparse representa-
tion (RP-SR),54 visual saliency map and weighted
least square optimization (VSM-WLS),55 multi-scale
transform with sparse representation (MST-SR),54 non-
subsampled contourlet transform with sparse represen-
tation (NSCT-SR)54),and finally two methods from other
categories gradient transfer and total variation minimiza-
tion fusion (GTF),56 and infrared feature extraction and
visual information preservation (IFEVIP).57 All fusion
algorithms were applied on 2D slices,except the wavelet
method. All methods were adopted from the Visible and
Infrared Image Fusion Benchmark (VIFB) package.58

2.4 DL model

We implemented the modified U2-Net architecture as
the baseline of DL model.59 Deep supervision and
residual U-blocks were integrated into the U2-Net
architecture.59 The U-structure of the U-Net31 was kept,
but inside each block, another U-Net with symmetric
encoder-decoder architecture was implemented. This
U2-Net architecture helps to prevent resolution degra-
dation and feature extraction with a mixture of receptive
fields and keeps the computational and memory foot-
print low.59 Figure 1 illustrates the network architecture
and fusion implemented in this study.

2.5 DL fusion

In the input-level fusion scenario, images from PET and
CT modalities are fused at the first channels, inputting
as multi-channel to one network for the segmenta-
tion task. As such, PET and CT are regarded as two
input channels in which, in this scenario, different cru-
cial information (anatomical and metabolical) for this
task could be fully exploited at different feature lev-
els. In the decision-level fusion scenario, two different
models were trained separately for PET and CT, each
with a single input, and at the end, the segmentation
results are integrated. In our implementation, averaging
of the confidence of each network was used. Finally,
information fusion is performed in layers by connect-
ing different layers in the network-level fusion scenario.
In our implementation, PET and CT go through various

networks, and the weights of the different layers are
connected during training. All layers are connected in
Fusion_NetLev fusion.

2.6 STAPLE and majority voting

Simultaneous truth, performance level estimation
(STAPLE)60 and majority voting were implemented
to merge different segmentation outputs as output-
level voting-based information fusion. We implemented
output-level voting-based fusion of different scenarios,
including output-level voting-based fusion of all image
segmentation methods (conventional and DL-based),
conventional image fusion output, DL-based output,
and fast (excluding time-consuming methods) NSCT,
MDLatLRR, and CBF methods output fusion.

2.7 Training the networks

The networks were trained in a 2D fashion with a batch
size of 64,an Adam optimizer,a learning rate of 0.001,a
Dice loss,and a weight decay of 0.0001.Twenty percent
of the dataset with stratification of centers was used for
the final result reporting, where 80% of the data set was
used for training and validation (70/10%, respectively),
while the rest (20% of the data set) was untouched for
the hold-out test set.

2.8 Quantitative evaluation metabolic
activity intensity and shape analysis

Standard segmentation metrics, including Dice similar-
ity coefficient (DSC),Jaccard similarity coefficient (JSC),
false-negative rate, false-positive rate, volume similar-
ity, and mean and standard deviation (SD) of surface
distance with manual segmentation were calculated
to evaluate and compare models’ performance. More-
over, the performance of all models was assessed from
a clinical perspective using image-derived PET met-
rics, including SUVpeak, SUVmean, SUVmedian, SUVmax,
Metabolic Tumor Volume (MTV) and Total Lesion Gly-
colysis (TLG). In addition to the abovementioned con-
ventional PET metrics,morphological features, including
sphericity, asphericity, elongation and flatness, were
mined using the SERA radiomics package.60–62 The
mean error (ME) of the abovementioned metrics was
reported for each model with respect to manual seg-
mentations. All quantitative metrics were extracted from
the 3D segmented volumes.

2.9 Statistical analysis

All metrics were described statistically with mean ± SD
and 95% confidence interval (CI). First, conventional
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F IGURE 1 Network architecture in different scenarios, including single image input (PET, CT, or fused image), input-level network fusion
(PET and CT input simultaneously), decision-level network fusion (PET and CT go through different networks, and fusion performed on the final
layer), and network-level fusion (weights are connected at different level of networks).CT, computed tomography.

PET metrics derived from each model segmentation
mask were compared with their peers derived from
the manual segmentation mask, using the ME. Next,
the Kolmogorov-Smirnov test was utilized to evaluate
normal distributions. Then, the Wilcoxon Signed Rank
Test was used to compare the paired distributions of
different segmentation metrics. A p-value <0.05 was
set as the significance threshold. The algorithms were
implemented on a desktop PC with Intel(R) Core(TM)
i9-10900KF CPU 3.70 GHz, “32 GB RAM, and NVIDIA
GEFORCE RTX 2080 Ti GPU.”

3 RESULTS

The mean and standard deviation of performance met-
rics for image segmentations are shown in Table 2 for

CT, PET, and the different fusion models. Their 95%
confidence interval is presented in Table S1. The cor-
responding boxplots are illustrated in Figure 2. Since
the loss function was based on the Dice score, we
reported and compared models using the Dice score
metric. Nevertheless, other metrics are presented for a
more thorough comparison. Regarding single modali-
ties, PET had a reasonable performance with a Dice
score of 0.77 ± 0.09, while CT did not perform well,
reaching a Dice score of only 0.38 ± 0.22. Conven-
tional algorithms obtained a Dice score range of [0.76,
0.81] with GFCE (0.76 ± 0.1) at the low-end and ADF
(0.81 ± 0.08), MSVD (0.81 ± 0.09), and MDLatLRR
(0.81 ± 0.07) at the high-end, respectively. Network
fusion models achieved Dice scores of 0.80 ± 0.09,
0.80 ± 0.09, and 0.80 ± 0.1 for InpLev, DesLev,
and NetLev, respectively. Output fusion models (voting
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326 INFORMATION FUSION FOR PET/CT SEGMENTATION

F IGURE 2 Box plots of different segmentation metrics for different segmentation models, including DSC, JSC, false-negative rate,
false-positive rate, volume similarity, and mean and SD of surface distance. DSC, Dice similarity coefficient; JSC, Jaccard similarity coefficient;
SD, standard deviation.

models) outperformed all other models, while Major-
ity voting models achieved superior results with a Dice
score of 0.84 ± 0.07 for Majority_ImgFus, Majority_All,
and Majority_Fast.

Figure 3 shows the segmentations delineated by the
best models for 2D slices of four patients. Figure 4
illustrates the 3D segmentation of HNCs by the best
models for different cases with different sizes of tumors.
Moreover, the same result for all models is presented in
Figures S1–S3.

Table 3 lists the mean ± SD of the ME of quantita-
tive PET metrics and morphological radiomic features
extracted from manual segmentation for all models.
Their confidence interval is listed in Table S2. PET
metrics, including SUVpeak, SUVmean, SUVmedian, and
SUVmax, were perfectly matched between manual seg-
mentation and segmentations from PET and all fusion
models. In contrast, the CT model did not show confor-
mity in any metric.

Figure 5 shows the results of model performance
comparison using paired distributions Wilcoxon Signed

Rank Test and t-values on the corresponding Dice
scores. CT had significantly lower results compared
to all other models. Compared to PET, among image
fusion methods, ADF, MGFF, MSVD, and Wavelet from
the Multi-scale group, MDLatLRR, and TIF from the
Saliency-based, and VSM-WLS from hybrid methods
outperformed PET. Among network fusion models, only
Fusion-InpLev model outperformed PET. All models
from the output level fusion strategy (Staple and Major-
ity Voting models) showed superiority over PET alone.
Finally, the best model was Majority-All which signifi-
cantly outperformed all models, except Staple-NetFus,
Majority-Fast, Majority-NetFus, and Majority-ImFus. In
addition to the Dice score, other metrics were also
compared and the results presented in Figures S4
and S5.

Table 4 lists the timing results of all models. The
first column shows the time spent by each model on
average slice (averaged on 150 different slices from
different regions of the HN and different tumors). The
second column shows the time spent for an average
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INFORMATION FUSION FOR PET/CT SEGMENTATION 327

F IGURE 3 Visualization of segmentation output of representative clinical studies on transaxial slices with their corresponding zoomed
version. Manual: Red; PET: Green, MDLatLRRR: Blue, Fusion_Ils: orange, Fusion_DLs: Olive, FusionNLs: Brown, Staple All: Yellow, Majority All:
Cyan.

F IGURE 4 Representative 3D view of the different tumors with different sizes from different centers for manual, CT, PET, MDLatLRRR,
Fusion_Ils, Fusion_DLs, FusionNLs, Staple, and Majority All. CT, computed tomography.
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328 INFORMATION FUSION FOR PET/CT SEGMENTATION

F IGURE 5 Heat map of p-values (left) and t-values (right) for comparing different segmentation methods pair-wise. The row is the
reference for t-values.

patient, assuming the patient has 50 slices. Regarding
image fusion methods, CBF, Hybrid-MSD, MDLatLRR,
and NSCT-SR,achieving 1.081,0.225,6.528,and 0.686
s, respectively, were the slowest models.

All other image fusion models were used for fast Sta-
ple and fast Majority Voting models. In the majority
voting models, majority-All achieved the lowest com-
putational time (9.295 s) for each slice. While having
statistically comparable performance with the Majority-
All model, the Majority-Fast model took only 0.772 s on
average per slice and 38.5 s on average per patient.

4 DISCUSSION

Gross tumor volume (GTV) estimation using reliable and
robust segmentations of HNC is essential to correctly
and successfully plan patient treatment and predict out-
comes.However,manual GTV segmentation on PET/CT
images is time-consuming, often requiring to switch
between PET and CT images. In addition, it is subject
to intra- and inter-observer variability. Therefore, accu-
rate and fast automated PET/CT image segmentation is
essential. Moreover, PET/CT may offer complementary
information regarding improved analysis of submucosal
deep tumor invasion, monitoring of treatment, and more
precise interpretation of disease prognosis.

HNC tumor segmentation on CT images is challeng-
ing owing to low soft-tissue contrast since the distinc-
tion between the tumor and peri-tumoral inflammation
is hardly possible despite CT providing anatomical
information and good contrast between soft tissues,
bone, and air. In our study, CT-only images achieved
a Dice score of only 0.38 ± 0.22 in the test set.
PET-only images, however, achieved a Dice score of

0.77 ± 0.09 in the test set. Nevertheless, by combining
PET and CT information integrated at different levels,
our study clearly showed that high Dice scores of 0.81,
0.80, and 0.84 for image level, DL network level, and
output-level voting-based information fusion could be
achieved.

Until now, most published studies focused on extract-
ing feature representations from a single modality.
Fusion techniques have been suggested to utilize
the complimentary data from multi-modality images.
The accuracy of tumor detection, correct staging,
and segmentation can be increased rationally by
using complementary information from multiple imaging
modalities.2,3,32,63 Numerous PET and CT fusion tech-
niques have been investigated, including in the image
domain (conventional algorithms), DL-based (input,
layer, and decision level), and output level (voting from
the output of multiple models). In the current study, we
employed different PET and CT information fusions for
HNC segmentation. We showed that information fusion
of PET and CT using conventional algorithms in the
image domain and DL-based fusion could achieve com-
petitive performance. Furthermore, image segmentation
information fusion using majority voting from different
algorithms outperformed other algorithms.

Andrearczyk et al.64 developed 2D and 3D fully con-
volutional V-Net models for tumor and nodal metastasis
segmentation in the HN region of 202 patients.While the
achieved Dice scores on single CT and PET modalities
were 0.48 and 0.58, respectively, the PET/CT multi-
modal model (integrated on a late fusion approach)
significantly improved the Dice score (0.60). In addition,
their 2D model (Dice = 0.60) slightly outperformed the
3D model (Dice = 0.59). Moe et al.65 developed U-Net
CNN models for completely automated segmentation
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330 INFORMATION FUSION FOR PET/CT SEGMENTATION

TABLE 4 Inference time of the different algorithms for
information fusion for the different strategies.

Strategy Model
Average
slice

Average
patient

Image fusion ADF 0.055 2.739

CBF 1.081 54.030

GFCE 0.091 4.564

GFF 0.048 2.400

HMSD_GF 0.088 4.385

Hybrid_MSD 0.225 11.243

MGFF 0.081 4.070

MSVD 0.038 1.897

Wavelet 0.012 0.578

FPDE 0.081 4.040

MDLatLRR 6.528 326.413

TIF 0.004 0.203

MST_SR 0.010 0.500

NSCT_SR 0.686 34.323

RP_SR 0.010 0.513

VSM_WLS 0.114 5.688

GTF 0.080 4.005

IFEVIP 0.036 1.776

Network fusion Fusion_InpLev 0.003 0.155

Fusion_DesLev 0.005 0.227

Fusion_NetLev 0.005 0.227

STAPLE Staple_ImgFus 9.303 465.160

Staple_NetFus 0.019 0.930

Staple_All 9.368 468.416

Staple_Fast 0.796 39.787

Majority voting Majority_ImgFus 9.280 463.985

Majority_NetFus 0.015 0.726

Majority_All 9.295 464.736

Majority_Fast 0.772 38.593

Abbreviations: ADF, anisotropic diffusion and Karhunen–Loeve transform fusion;
CBF, cross bilateral filter; FPDE, fourth order partial differential equations;
GFCE, guided-filter-based context enhancement; GFF, guided filtering fusion;
GTF,gradient transfer and total variation minimization fusion;Hybrid-MSD,hybrid
multi-scale decomposition;IFEVIP, infrared feature extraction and visual informa-
tion preservation; MDLatLRR, multi-level image decomposition based on latent
low-rank representation; MGFF, multi-scale guided filtered-based fusion; MSVD,
multi-resolution singular value decomposition; STAPLE, Simultaneous truth and
performance level estimation; TIF, two-scale image fusion.

of HNC GTV using CT, PET, and PET/CT images. The
model trained, validated, and tested on 142, 15, and
40 patients, respectively, achieved a Dice score of
0.55, 0.69, and 0.71 for CT, PET, and PET/CT models,
respectively. In addition, they reported the importance
of PET images in the DL model development for HNC
GTV segmentation. More importantly, the winner of
the 2021 MICCAI HNC tumor segmentation challenge
(HECKTOR 2022) developed a SegResNet semantic
segmentation model for 3D segmentation of tumors

and lymph nodes using PET/CT images and achieved a
Dice score of 0.788.66 Their study included 883 cases,
with 524 cases used for training and the rest for model
testing.

Guo et al.29 proposed three different neural net-
work architectures for integrating multi-modality medical
images in the network’s feature-learning, classifier, and
decision-making levels. The authors used these struc-
tures to develop automated image segmentation models
for segmenting soft-tissue sarcomas using MR, CT, and
PET images.29 Superior performances for multi-modal
models compared to single modalities were reported.29

The authors concluded that fusing within the net-
work (convolutional or fully connected layers) generally
resulted in superior performance compared to mod-
els fused at the output (decision level). We examined
various weight flow configurations during the fusion of
networks in the Fusion_NetLev setting (low-level to high-
level feature fusion). However, our experiments did not
reveal significant differences in PET image segmenta-
tion performance across these settings. As indicated
in the results, network fusion attained consistent per-
formance metrics for Fusion_InpLev (0.80 ± 0.09),
Fusion_DesLev (0.80 ± 0.09), and Fusion_NetLev
(0.80 ± 0.1). This suggests that a different way of
fusion in Fusion_NetLev (low or high level) could con-
verge to the performance observed in Fusion_InpLev
and Fusion_DesLev. We did not observe significant dif-
ferences between the fusion results at various levels.
Therefore, we chose to report only one setting to main-
tain coherence and simplify the presentation of our
findings.

Using multi-modality images is challenging because
CT and PET resolution and overall imaging charac-
teristics of HNC on these modalities are different. To
achieve similar resolution on both imaging modalities
prior to fusion in the pre-processing step, one imaging
modality must be down- or up-sampled. Image distor-
tion usually occurs during the up or down sampling
procedure, thus limiting the structural features that may
be seen on PET compared to CT.67 Our study inher-
ently bears some limitations, including the size of the
dataset, not involving lymph node region segmenta-
tion, and the lack of an external validation set. Future
studies should be performed on larger datasets and
tested on external test sets.68 However, we used a
standard split of data sets in our study. In addition,
our study focused on the tumor GTV; yet, lymph node
segmentation is equally required for radiation therapy.
Future studies should include them for segmentation
purposes.

5 CONCLUSION

In the current study, we considered different fusion
techniques applied to PET/CT images, employing
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conventional and DL methods, as well as output-level
voting fusions, towards improved HNC segmentation.
We conclude that image fusion adds significant value to
segmentation tasks, considerably outperforming PET-
only and CT-only methods. Meanwhile, output-level
voting-based fusion using majority voting on outputs
of different algorithms considerably improved HNC
segmentation performance, while both conventional
and DL algorithms (without voting) produced competi-
tive yet inferior results. Nevertheless, they significantly
outperformed single-modality-based segmentations.
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