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Abstract

Background: Contrast-enhanced computed tomography (CECT) provides
much more information compared to non-enhanced CT images, especially for
the differentiation of malignancies, such as liver carcinomas. Contrast media
injection phase information is usually missing on public datasets and not stan-
dardized in the clinic even in the same region and language. This is a barrier to
effective use of available CECT images in clinical research.

Purpose: The aim of this study is to detect contrast media injection phase from
CT images by means of organ segmentation and machine learning algorithms.
Methods: A total number of 2509 CT images split into four subsets of non-
contrast (class #0), arterial (class #1), venous (class #2), and delayed (class
#3) after contrast media injection were collected from two CT scanners. Seven
organs including the liver, spleen, heart, kidneys, lungs, urinary bladder, and
aorta along with body contour masks were generated by pre-trained deep
learning algorithms. Subsequently, five first-order statistical features including
average, standard deviation, 10,50, and 90 percentiles extracted from the above-
mentioned masks were fed to machine learning models after feature selection
and reduction to classify the CT images in one of four above mentioned classes.
A 10-fold data split strategy was followed. The performance of our methodology
was evaluated in terms of classification accuracy metrics.

Results: The best performance was achieved by Boruta feature selection and
RF model with average area under the curve of more than 0.999 and accuracy
of 0.9936 averaged over four classes and 10 folds. Boruta feature selection
selected all predictor features. The lowest classification was observed for class
#2 (0.9888), which is already an excellent result. In the 10-fold strategy, only 33
cases from 2509 cases (~1.4%) were misclassified. The performance over all
folds was consistent.

Conclusions: We developed a fast, accurate, reliable, and explainable method-
ology to classify contrast media phases which may be useful in data curation
and annotation in big online datasets or local datasets with non-standard or
no series description. Our model containing two steps of deep learning and
machine learning may help to exploit available datasets more effectively.
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1 | INTRODUCTION

Computed tomography (CT), as a versatile non-invasive
imaging modality, plays a significant role in clinical diag-
nosis and follow-up of patients presenting with a wide
range of pathologies. The administration of contrast
media (mostly positive contrast media) improves the
diagnostic value and accuracy of this imaging pro-
cedure by enhancing the contrast in tissues.! This
enhanced contrast is useful in the differentiation of
multiple pathologic situations reflecting improved dis-
crimination between different tissue types? The most
common method of contrast media administration for
contrast enhanced CT (CE-CT) is intravenous injection
using radiopaque materials mostly containing iodine.
For instance, the management of patients treated with
selective internal radiation therapy (SIRT) for the treat-
ment of liver malignancies requires CE-CT for the
delineation of the tumoral tissues, perfused liver lobe
and organs at risk towards personalized dosimetry?

Artificial intelligence (Al) and particularly deep
learning has shown very promising performance in
multiple tasks, including image segmentation,*~% image
generation,”® dosimetry®'" and classification.'>'3
However, the number of clean and reliable data avail-
able is still the bottle neck for generalizability and
robustness of deep learning models. In this regard, data
and model sharing between imaging centers may help
to collect diverse training datasets. However, even for
federated learning strategies, the data should be in the
same format to be able to train a model among different
centers.'* Although the DICOM standard is capable of
storing information about the injection phase, privacy
issues require that the image data has to be anonymized
by removing private tags, which might include remov-
ing the injection phase information. We evaluated the
number of online available datasets and came to the
conclusion that most datasets in DICOM format did
not have any straightforward information about the
contrast media injection phase, while the image only
data formats, such as NIFTI, do not include any related
information; Even within the same hospital when using
different scanners, the naming of study/series/contrast
injection phase are commonly not consistent, even in
the same department.'”® For example, in our dataset,
terms such as “tardif, Tard, Tardivo, Tardive, Delayed”
were used for the delayed phase whereas “SPC, Plain,
NoContrast, SANS IV, NATIF, native” were used for unen-
hanced images. The formal written language between
different cities and imaging centers is another barrier
in effective data sharing between centers even in a
single country. These limitations and lack of trustable
information about the contrast media administrative
phases underscore the need for developing an easily
accessible solution based on minimum shared data,
which is the image matrix only.

Philbrick et al.'® trained deep neural network classi-
fiers to separate contrast enhanced phases in abdom-
inal CTs for kidney pathologies indications. They
attempted to explain what the network sees during train-
ing and inference by generating GradCam and saliency
maps after each decision. They reported F1-scores
between 0.781 and 0.999 for different contrast media
phases. Zhou et al.'” trained a deep neural network
to separate four phases of liver CE-CT including non-
contrast, arterial, venous, and delay. They used natural
language processing to extract the ground truth data
from DICOM tags and reported an average F1-score
of 0.977 on a very large dataset. Tang et al.'® used a
generative adversarial network to classify the contrast
phases in abdominal CE-CTs and achieved an accuracy
of 0.93. They used 2D axial slices to train and evalu-
ate the algorithm. Dao et al."® used random sampling
and deep neural networks for automated classification
of CE-CT images. They reported F1 score of 0.9209 on
the internal test consisting of 358 scans using 2D slices
as input to the network. The evaluation of their algorithm
on external datasets reported F1 scores of 0.7679 and
0.8694 on two manually annotated online databases.
Muhamedrahimov et al?° used CE-CT images and the
time from injection as the ground truth to train a regres-
sion machine learning model to predict the time from
injection. Then they used these times to classify images
and reported an overall accuracy of 0.933 in classifica-
tion. Rocha et al.'”® used machine learning to classify
axial 2D slices from liver CE-CTs in four phases and
reported an accuracy of more than 0.98. Reis et al2’
independently adopted a strategy similar to the one
used in our study and developed a machine learn-
ing method to classify contrast media phase based on
few organs segmentation. They used online available
datasets to train their network and reported F1 scores
of 0.966,0.789,0.922, and 0.95 for four contrast phases
consisting of non-contrast, arterial, venal, and delayed,
respectively.

This study is an extension of previous preliminary
work aimed to develop explainable, fast, and accurate
methodology to classify the contrast media phase using
imaging only data. Inspired by the logic human follows
to understand the injection phase, which includes check-
ing the enhancement ratio and the hounsfield unit (HU)
in few organs, such as aorta and kidney, we attempted to
use the very simple features extracted from the above-
mentioned regions and machine learning algorithms to
classify CT images.

2 | MATERIALS AND METHODS

This study included 2509 Thorax/Abdomen CT images
acquired between 2011 and 2022 on scanners commer-
cialized by two different vendors (Siemens Healthcare
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and Philips Medical Systems) in different imaging cen-
ters for evaluation of different liver pathologies, mainly
for initial diagnosis and follow-up of liver malignancies,
such as hepatocellular carcinoma (HCC). All images
were acquired in Geneva University Hospital. CT images
were acquired in four phases, including non-enhanced
(W/O) (class 0, 683 images), arterial (class 1, 714
images), venous (class 2, 419 images), and delayed
(class 3, 693 images) acquisition with the same scan
range covering the abdominal area or more. The total
number of patients included in this study is 581 patients.
The pipeline of this study is showed in Figure 1.
First, the technologists classified the images in one of
the phases according to the DICOM series informa-
tion header series description according to their local
definitions. These classes for each 3D image were
used as the ground truth for training and evaluation
of our methodology. Meanwhile, seven organs including
the liver, spleen, heart, kidneys, lungs, urinary bladder,
and aorta plus body contour were segmented from
CT images automatically using previously developed
algorithm?? Second, five first-order features, including
the average, standard deviation (SD), 10 percentile,
median, and 90 percentiles were extracted using basic
Python software-based image processing using Sim-
plelTK (version 2.2) and Numpy (version 1.2) libraries.
Overall, five features from seven organs (35 features)
were extracted. These five features for seven organs (in
total 35 features) were used to train a machine learn-
ing algorithm to perform classification task in a 10-fold
data split strategy. Finally, the performance of the whole
algorithm was evaluated in terms of F1 score, accuracy,
specificity, sensitivity, precision, and area under the curve
(AUC). Receiver operating characteristic (ROC) curves
and confusion matrices were then generated for further
evaluation.

2.1 | Feature selection and machine
learning

Three feature selection methods, including Boruta?®
Maximum Relevance Minimum Redundancy (MRMR),%*
and Recursive Feature Elimination (RFE)?° were used
to reduce the number of features. Boruta and RFE
are wrapper-based whereas MRMR is filter-based algo-
rithm. In Boruta and RFE, the number of selected
features is determined by specific criteria, while in
MRMR, it is based on the top 15 features. Subsequently,
six different classifiers, including K-nearest neighbors
(KNN),26 eXtreme Gradient Boosting (XGB),?” Decision
Tree (DT),® Support Vector Machine (SVM),?° Naive
Bayes (NB)>° and Random Forest (RF)3'" were used
to classify images. In this study, we used nested cross-
validation with outer and inner validation. We used
10-fold cross-validation for outer validation. In each rep-
etition of outer validation, feature selection methods
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were performed on nine portions of data followed by
training the classifier model. Hyperparameter optimiza-
tion for each classifier was performed using inner 10-fold
cross-validation scheme; the detailed parameters mod-
ified during optimization are summarized in Table S1.
The trained models with the best hyperparameter were
tested on one portion of dataset. This procedure was
repeated 10 times. Finally, among these 3 x 6 feature
selection/models, the best model based on performance
was selected. For model evaluation, we used confusion
matrix, AUC, F1_score, sensitivity, specificity, precision,
and accuracy.

2.2 | Segmentation model

A previously developed and validated ResUNET-based
model was used for CT image segmentation.?? First, the
body contour was generated on CT images via image
processing algorithms and then this contour was used
to crop the images to foreground. Then, the trained mod-
els were used to generate segmentation masks through
inference on every 2D axial CT slice. Organ-specific
post-processing was performed to refine the network
output by implementing prior knowledge about the posi-
tion of organs in the human body. Information from the
liver and lung segmentations was used to remove false
positive segmented voxels from the network output. For
example, if the deep learning (DL) model assigns some
voxels in the neck region to the liver, we used the lung
segmentation boundaries to remove the false positive
segmentations. Through this strategy, we implemented
prior knowledge about the anatomical location of organs
to improve the segmentation accuracy. The Dice coef-
ficients (in %) for this segmentation model reported
on external dataset were 96.98 + 1.62, 94.68 + 9.28,
91.95+6.13,94.13 + 5.05,97.63 + 1.18,83.78 + 17.97,
93.55 + 2.22, for the liver, spleen, heart, kidneys, lungs,
urinary bladder, aorta, respectively. It should be noted
that we expected an error in the segmentations as the
Dice values deviated from the ideal value of 1. However,
if the segmentation model missed parts of the aorta,
liver, heart, or other organs, the average value and the
simple features selected and used were not significantly
affected. We used an average value in the aorta and
other organs for partly segmented aorta and the average
difference was less than 5%.

The five mentioned features including average, SD, 10
percentile, median, and 90 percentiles were calculated
inside the eight segmentation masks including the liver,
spleen, heart, kidneys, lungs, urinary bladder, aorta, and
body contour and recorded for the next step.

3 | RESULTS

Table 1 summarizes the demographic information
of the patients included in this study plus the
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Flowchart of the steps followed in this study. The manual image labels were extracted according to the DICOM metadata.

Demographic and acquisition parameters of patients included in the study protocol, kVp (Tube voltage).

Demographics

Acquisition/Reconstruction parameters

Age (years) 65.23 + 11.36 Manufacturer Philips, Siemens
Date 2011 to 2022 kVp 70, 80,90, 110, 130
Weight (Kg) 79.25 + 16.64 Pitch factor 0.90 + 0.25

Class #0 683 CTDlyg (MmGy) 9.98 +10.14
Class #1 714 Slice thickness (mm) 2.35+1.68

Class #2 419 Acquisition diameter (mm) 498 + 43

Class #3 693 Reconstruction diameter (mm) 414 + 84

total 2509 Average tube current (mA) 288.89 + 137.93

acquisition/reconstruction CT parameters. Patients’ age
was 65.23 + 11.36 years, and the average tube current
was 288.8989 + 137.9301 mA. This was a balanced
distribution of data between classes where there were
683, 714, 419, and 693 images in classes 0 to 3,
respectively.

3.1 | Segmentation

Figures 2 and 3 depict examples of visualization of
segmented organs on axial images. The segmentation
shows almost the same region in four phases. Please
note the enhancement and differences in the seg-
mented regions on Figures 2 and 3. The urinary bladder
was not included in all images. Hence, we excluded this
organ as a predictor in our model that is, six organs plus
body contour (seven segmentation masks) were used to
train the machine learning model. Figure 4 presents a 3D
visualization of the segmented organs in different views.
3D rotating views showing the segmentation outcome
are provided in supplementary material section.

3.2 | Selected model and feature
selection

The best performance was achieved by Boruta feature
selection and RF model. This feature selection method
found all the expected important features, because the
features were selected according to the specific task.
Figure S1 shows the feature importances indicated
by this FS method. The highest importance in Boruta
feature selection was for aorta, cardiac, and spleen
organs.

3.3 | Classification results average for
the best model/feature selection

Table 2 summarizes the results of the classification
model calculated in 10-fold data split strategy. F1-score
was 0.9842 in average for the four classes, while the
highest score was for non-enhanced (0.9978) and the
lowest was for venous phase (0.9667). An AUC higher
than 0.99 was achieved for all four classes.
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FIGURE 2 Axial CT slices of the same patient presenting with HCC in four phases including non-contrast (#0, top row), arterial (#1, second
row), Venous (#2, third row) and delayed (#3, fourth row). The same line colors show the segmented organs. Please note the enhancement in
the segmented regions. A window/level of 500/0 HU was used for all images to be comparable. Green: spleen, yellow: kidneys, dark red: liver,
light blue: lungs, purple: aorta, pink: vertebrae (was not used in the model). CT, computed tomography; HCC, hepatocellular carcinoma.

TABLE 2 The classification performance of the best model for each of the four classes.

Class F1_score Sensitivity Specificity Precision Accuracy AUC

0 (W/0) 0.9978 0.9956 1.0000 1.0000 0.9988 0.9989
1 (Arterial) 0.9951 0.9916 0.9994 0.9986 0.9972 1.0000
2 (Vein) 0.9667 0.9690 0.9928 0.9644 0.9888 0.9983
3 (Delay) 0.9813 0.9856 0.9912 0.9771 0.9896 0.9991
Total classes 0.9852 0.9854 0.9959 0.9850 0.9936 0.9991

Abbreviation: AUC, area under the curve.

Figure 5 represents the normalized confusion matrix
for all data included in 10-fold strategy. The lowest per-
formance was achieved for the venous phase once
again. Figure 6 shows the ROC curves for all classes
demonstrating excellent performance.

3.4 | Classification results—10-folds

Table 3 shows the performance of our proposed model
for each fold, averaged over all four classes. The
results are consistent among folds which shows the
robustness and reproducibility of our model. Figure S2
shows the normalized confusion matrix for each fold,
demonstrating consistent performance.

Table 4 summarizes the performance metrics for dif-
ferent combinations of feature selection and models,

indicating Boruta/RF selected in this work as the best
model.

4 | DISCUSSION

Identifying the contrast injection phase in contrast-
enhanced CT images is a crucial step in using online
or local databases for various machine learning or mod-
eling tasks. Unfortunately, the DICOM headers, and
naming in metadata among imaging centers is not
standardized, which is a hurdle in developing mod-
els based on large datasets. We proposed a novel
method based on DL-based segmentation developed in
our group and a RF machine learning model to clas-
sify CT images. Our results were promising, achieving
an average AUC of 0.9991 and accuracy of 0.9936.
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FIGURE 3 Axial CT slices for a patient referred for metastatic liver malignancies indication (same caption as Figure 2). The window/level is
500/0 HU and the difference in lung is not visible. Green: spleen, yellow: kidneys, dark red: liver, light blue: lungs, purple: aorta, pink: vertebrae

(was not used in the model). CT, computed tomography.

TABLE 3 The classification performance separated by folds.

Fold F1_score sensitivity specificity precision accuracy AUC

0 0.9820 0.9831 0.9949 0.9810 0.9920 0.9988
1 0.9767 0.9821 0.9940 0.9734 0.9901 0.9998
2 0.9777 0.9799 0.9937 0.9759 0.9901 0.9973
3 0.9952 0.9940 0.9986 0.9964 0.9980 0.9999
4 0.9856 0.9846 0.9960 0.9869 0.9940 0.9998
5 0.9880 0.9892 0.9960 0.9870 0.9940 0.9995
6 0.9810 0.9812 0.9949 0.9811 0.9920 0.9975
7 0.9821 0.9808 0.9946 0.9835 0.9920 0.9997
8 0.9903 0.9881 0.9972 0.9930 0.9960 0.9999
9 0.9904 0.9904 0.9974 0.9904 0.9960 0.9998

Abbreviation: AUC, area under the curve.

10-fold data split with consistent performance over all
folds demonstrated the robustness of our methodology
on a fairly large database consisting of 2509 3D CT
images. The overall error in our study is an accumulation

of errors arising from the segmentation and machine
learning classification tasks. However the whole pipeline

is automated from scratch and showed excellent results.

Our light-weight segmentation model with an average
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FIGURE 4 Examples of segmented organs displayed in 3D views. Yellow: heart, purple: aorta, brown: urinary bladder. green: spleen, light
yellow: kidney, dark red: liver, light blue: lungs. The vertebrae and ribs were shown for better visualization. Each row belongs to a single patient
and the columns represent 3D views from four different views from anterior to posterior.
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FIGURE 5 Normalized confusion matrix showing the excellent
performance of the model in 10-fold strategy.

inference time of ~8 s per image for all seven organs
and less than 1 s for machine learning part offers
an affordable and accurate methodology for handling

ROC Curve
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FIGURE 6 ROC curve showing excellent classifications. The
legend at the top-right shows the calculated AUC for each class.
AUC, area under the curve; ROC, receiver operating characteristic.

large datasets. We attempted to reproduce what human
logic follows to indicate the contrast media phase in a
typical CT image, which makes our methodology com-
pletely explainable. After intra-venous injection of the
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TABLE 4 Performance comparison of different FS/Model
combinations averaged over 10 folds.

FS—Model F1_score Sensitivity Specificity Accuracy AUC

Boruta-DT  0.9573  0.9536 0.9870 0.9809 0.9817
Boruta—KNN 0.9786  0.9778 0.9940 0.9908 0.9967
Boruta—-NB  0.9614  0.9631 0.9894 0.9835 0.9931
Boruta—RF  0.9849  0.9853 0.9957 0.9934 0.9991
Boruta—SVM 0.9807  0.9805 0.9943 0.9914 0.9991
Boruta—XGB 0.9634  0.9588 0.9891 0.9698 0.9841
MRMR-DT 0.9493  0.9457 0.9854 0.9783 0.9831
MRMR-KNN 0.9783  0.9777 0.9938 0.9906 0.9956
MRMR-NB 0.9494  0.9512 0.9862 0.9785 0.9928
MRMR-RF  0.9796  0.9804 0.9944 0.9912 0.9990
MRMR-SVM 0.9829  0.9830 0.9950 0.9924 0.9986
MRMR-XGB 0.9810  0.9815 0.9947 0.9918 0.9980
RFE-DT 0.9523  0.9485 0.9862 0.9795 0.9807
RFE-KNN  0.9681 0.9662 0.9909 0.9862 0.9939
RFE-NB 0.9212  0.9248 0.9780 0.9655 0.9889
RFE-RF 0.9705  0.9691 0.9917 0.9874 0.9969
RFE-SVM  0.9723  0.9701 0.9920 0.9880 0.9953
RFE-XGB  0.9716  0.9703 0.9920 0.9878 0.9971

Abbreviations: AUC, area under the curve; DT, decision tree; KNN, K-nearest
neighbors; MRMR, maximum relevance minimum redundancy; NB, naive Bayes;
RF, random forest; SVM, support vector machine; XGB, eXtreme gradient
boosting.

contrast media, depending on the time passed, different
combinations of enhancement in different organs are
observed. First, enhancement in the descending aorta,
then the rest of organs as shown in Figures 2 and 3.
We used the basic information from these important
organs to predict the injection phase. To do so, the input
to machine learning classifier is a very basic statistical
measurement of the average, SD, and 10, 50, and 90
percentiles. Boruta feature selection (FS) selected all
35 features which was expected as we only calculated
meaningful first-order features. Our aim was to make the
procedure as simple and explainable as possible without
using deep learning classifiers and without using higher
order radiomics/texture features. By breaking down the
decision process into segmentation and classification
steps, we tried to avoid using Al as a black box and follow
human logic to perform the task. This two-step approach
may be safer and more resilient to errors and our results
demonstrated superior performance compared to direct
deep learning classification studies. It should be clar-
ified that we did not manipulate the decision-making
process by machines (e.g., Random Forest machine)
during training or testing phase. We fed the model with
the features that humans consider for identifying the
contrast injection phase. We used 90 percentile, aver-
age and 10 percentile features to avoid misclassification
resulting from situations, such as aorta calcification or
kidney stone presenting with high HUs, which might

affect the model’s decision-making process. High-level
texture features, such as Gray Level Co-Occurrence
Matrix (GLCM) extracted from the volumes of interest
night provide relevant additional information. However,
the aim of this study was to generate a reliable and
explainable model using the most simplistic possible
features. Considering high level texture features raises
the question about their reproducibility when using dif-
ferent scanners, reconstruction kernels, kVps and other
acquisition parameters, as reported in the literature 3233
Conversely, the features used, such as average, are
more reproducible as they regularly checked by QA pro-
tocols. Besides the overall accuracy of our purposed
pipeline was 0.9936, which is already very good.

In terms of accuracy, our proposed model outper-
formed or is comparable with results reported in the
published literature, with prediction of only 33/2509
cases (~ < 1.4%) in the wrong class. The misclassi-
fied cases were reviewed, and it appears that the main
reason was an error in the segmentation module. The
accuracy was excellent for all four classes without a
drop in performance in a single class. Our F1-score
(0.9852) was better than the one reported by Zhou
et al.'” (0.977) and Dao et al."® (0.9209). The achieved
accuracy (0.9936) was also higher than the one reported
by Tang et al.'"® (0.93) and Muhamedrahimov et al2°
(0.933).

Our study has a lot in common with what Reis
et al. study?’ The authors have almost followed the
same steps, except that they used 48 radiomics fea-
tures from each organ to predict the contrast media
phase and used TotalSegmentator®* trained models
to generate organs masks. The number of features
was lower in our study (five simple features), which
makes our methodology more explainable. We also used
our own light-weight segmentation model??> which is
much faster than TotalSegmentor®* (10 s vs 3 min).
In terms of accuracy, our model outperformed their
reported results. The F1-scores (our study vs Ries et al.
study) were 0.9978 versus 0.966, 0.9951 versus 0.789,
0.9667 versus 0.922, and 0.9813 versus 0.950 for the
four classes consisting of non-contrast, arterial, venous,
and delayed, respectively. However, we did not have
access to datasets used in previous studies to provide a
fair comparison with our model in a realistic way, and
as such, we compared our results with the classifica-
tion accuracy metrics reported in the literature. As an
external dataset, we used our model to predict the con-
trast injection phase on LiTs dataset®® and provided the
indicated label in Table S2.

Because of using multiple organs information, our
model may be robust for cases with pathological con-
ditions, such as renal failure, which can affect deep
learning-based image classification methodologies.'® It
should be mentioned that our segmentation model was
inferred on each CT image at each phase and per-
formed well on images from different contrast media
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injection phases. Due to the fact that our model inference
is very fast (1 s per image/organ), generating the training
dataset was not time consuming. Besides, our dataset
contains patients referred to radiology department for
severe pathologies in the liver and the segmentation
module showed robust performance in those cases (one
of these cases is shown in Figure 2).

Among the limitations of this study is that the
adopted methodology depends on the accuracy of the
segmentation model.

5 | CONCLUSION

We developed a fast, accurate, reliable, and explainable
methodology to classify the contrast media phases in
CT images, which may be useful in data curation and
annotation of large online datasets or local datasets
with non-standard or no series description. This algo-
rithm might help in better exploitation of shared datasets
more effectively and help to gain better solutions for a
variety of Al tasks by providing more reliable data tags
and information about contrast media phases.
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