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Abstract
Background: Attenuation and scatter correction is crucial for quantitative
positron emission tomography (PET) imaging. Direct attenuation correction
(AC) in the image domain using deep learning approaches has been recently
proposed for combined PET/MR and standalone PET modalities lacking
transmission scanning devices or anatomical imaging.
Purpose: In this study, different input settings were considered in the model
training to investigate deep learning-based AC in the image space.
Methods: Three different deep learning methods were developed for direct
AC in the image space: (i) use of non-attenuation-corrected PET images as
input (NonAC-PET), (ii) use of attenuation-corrected PET images with a simple
two-class AC map (composed of soft-tissue and background air) obtained from
NonAC-PET images (PET segmentation-based AC [SegAC-PET]), and (iii) use
of both NonAC-PET and SegAC-PET images in a Double-Channel fashion to
predict ground truth attenuation corrected PET images with Computed Tomog-
raphy images (CTAC-PET). Since a simple two-class AC map (generated from
NonAC-PET images) can easily be generated, this work assessed the added
value of incorporating SegAC-PET images into direct AC in the image space.
A 4-fold cross-validation scheme was adopted to train and evaluate the differ-
ent models based using 80 brain 18F-Fluorodeoxyglucose PET/CT images. The
voxel-wise and region-wise accuracy of the models were examined via measur-
ing the standardized uptake value (SUV) quantification bias in different regions
of the brain.
Results: The overall root mean square error (RMSE) for the Double-Channel
setting was 0.157 ± 0.08 SUV in the whole brain region, while RMSEs of
0.214 ± 0.07 and 0.189 ± 0.14 SUV were observed in NonAC-PET and SegAC-
PET models, respectively. A mean SUV bias of 0.01 ± 0.26% was achieved by
the Double-Channel model regarding the activity concentration in cerebellum
region, as opposed to 0.08 ± 0.28% and 0.05 ± 0.28% SUV biases for the
network that uniquely used NonAC-PET or SegAC-PET as input, respectively.
SegAC-PET images with an SUV bias of -1.15± 0.54%,served as a benchmark
for clinically accepted errors. In general, the Double-Channel network, relying on
both SegAC-PET and NonAC-PET images, outperformed the other AC models.
Conclusion: Since the generation of two-class AC maps from non-AC PET
images is straightforward, the current study investigated the potential added
value of incorporating SegAC-PET images into a deep learning-based direct
AC approach. Altogether, compared with models that use only NonAC-PET
and SegAC-PET images, the Double-Channel deep learning network exhibited
superior attenuation correction accuracy.

870 © 2024 American Association of Physicists in Medicine. wileyonlinelibrary.com/journal/mp Med Phys. 2024;51:870–880.

mailto:a_kamali@sbu.ac.ir
https://wileyonlinelibrary.com/journal/mp
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmp.16914&domain=pdf&date_stamp=2024-01-10


PET ATTENUATION CORRECTION STRATEGIES 871

KEYWORDS
attenuation correction, deep learning, PET, quantitative imaging, radiomics

1 INTRODUCTION

Positron emission tomography (PET), as a non-invasive
functional modality, provides 3-D biodistribution maps
of radioactive tracers at the molecular and cel-
lular levels. This enables non-invasive in-vivo esti-
mation of chemical and biological processes within
organs/tissues. Most neuroimaging PET studies employ
18F-Fluorodeoxyglucose (FDG) radiotracer for the diag-
nosis of neurodegenerative diseases owing to its close
correlation with cerebral glucose metabolism. In hybrid
PET/computed tomography (CT) scanners, CT images
are employed on virtually all commercial systems to
model/compensate for the physical degrading factors
including scattered and attenuated photons in PET.
However, some scatter correction approaches, such
as energy-based scatter correction,1–5 do not require
CT/transmission images or other structural information.

For PET attenuation and scatter correction, anatom-
ical CT images can be readily exploited in combined
PET/CT scanners. However, hybrid PET/magnetic res-
onance (MR) imaging devices face the challenge of
generating patient-specific attenuation maps based on
magnetic resonance images.6 This stems from the fact
that MR intensity reflects proton density rather than elec-
tron density, required in PET attenuation and scatter cor-
rection. Furthermore, attenuation and scatter correction
in standalone PET scanners, designed and fabricated
for brain imaging, is the major barrier to accurate quan-
titative PET imaging and reliable diagnosis.7 Though
these dedicated PET scanners provide relatively higher
sensitivity and spatial resolution, in comparison with the
conventional PET/CT or PET/MR systems, they are not
commonly combined with anatomical/structural imag-
ing modality.8,9 Hence, the generation of attenuation
maps or accounting for attenuated/scattered photons
is not a trivial task.10 Conventional strategies for the
generation of AC maps in dedicated-brain PET imag-
ing involve contouring the non-AC PET images and
assigning predefined attenuation coefficients to soft tis-
sue and bone11,12 or atlas registration, which relies
on paired datasets of head templates to identify the
underlying anatomical structures.13–15 Moreover, simul-
taneous reconstruction of activity and attenuation maps
enables PET AC without using transmission data.16–18

The advent of deep learning algorithms has enabled the
development of novel approaches for generating syn-
thetic CT from non-AC images,19–21 estimating attenua-
tion correction information from PET emission data,22–24

or applying attenuation correction on PET images using
hybrid methods, such as combining deep learning, joint
attenuation and activity map reconstruction.25,26

In addition to these approaches, direct application
of AC on PET images before attenuation and scatter
correction (NonAC-PET) without employing structural
information has shown promising results.10,23,27–28 To
this end, a deep learning network is trained to pre-
dict attenuation and scatter-corrected PET images from
NonAC-PET images using CT-based AC (CTAC-PET)
as ground truth. Furthermore, a segmentation-based
attenuation correction technique, implemented on com-
mercial systems, including the Philips whole-body Inge-
nuity TF PET/MRI,29 was employed as a silver standard
providing the bottom line of a clinically acceptable per-
formance expectation.24,10,28–29 In this regard, a simple
PET attenuation map containing only water-equivalent
attenuating medium can be generated by segment-
ing the subject outline from NonAC-PET images and
assigning predefined air and soft-tissue attenuation
coefficients to each voxel outside and inside of the
subject outline, respectively. The generation of such
AC maps does not require anatomical imaging, and
can be simply conducted from NonAC-PET images
with time-of -flight (TOF) information owing to the high
signal-to-noise ratio and relatively strong contrast at the
boundary of the body.30 This approximate attenuation
map can be used for preliminary PET AC, and a deep
learning network can then be trained on the resultant
segmentation-based attenuation corrected PET images
(SegAC-PET) in order to predict accurate PET AC
images based on these segmentations. Since the atten-
uation and scatter correction was partly/approximately
applied to these PET images, the prediction of accurate
PET AC images might be less challenging and/or more
robust for deep learning approaches.

In this study, the use of a suboptimal attenuation cor-
rection on PET data was investigated in the direct PET
AC through the assessment of different scenarios based
on a deep learning approach. These scenarios include:
(i) direct PET AC prediction from NonAC-PET images,
(ii) PET AC prediction from SegAC-PET images, and
(iii) PET AC prediction from a Double-Channel deep
learning approach using SegAC-PET and NonAC-PET
images simultaneously as inputs.

2 MATERIALS AND METHODS

2.1 PET/CT data acquisition

The assessment of direct AC in the image space was
conducted retrospectively on 80 participants who had
undergone TOF brain PET/CT examinations. The entire
patient group provided informed consent as required by
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872 PET ATTENUATION CORRECTION STRATEGIES

Geneva University Hospitals’ Ethics Committee for this
study. A total of 44 males and 36 females were involved
in this work having a mean weight and age of 73 ± 18 kg
and 66 ± 11 years, respectively.PET/CT brain data were
acquired on a Biograph mCT scanner (Siemens Health-
care) from a 20-min scan in a single bed position. A
low-dose CT imaging (using setting parameters of 120
kVp, 20 mAs, speed 0.3 s/rotation, voxel size 0.9 × 0.9 ×
2.5 mm3) was performed for PET AC. PET acquisitions
started 33 ± 5 min following the injection of 206 ± 12.95
MBq of 18F-FDG.

2.2 Data preparation

Direct application of AC on PET images in the image
space was investigated for three different strategies:
(i) use of NonAC-PET images as the input, (ii) use
of SegAC-PET images as the input, and (iii) use of
NonAC-PET and SegAC-PET images together in a
double-input mode to estimate PET AC images. To
train the deep learning models, a dataset consisting of
NonAC-PET, SegAC-PET, and CTAC-PET images was
created. To this end, the raw PET data reconstruction
was performed using Siemens e7 tool with and with-
out CT-derived attenuation maps to produce CTAC-PET
(reference image) and NonAC-PET images using TOF
3-D ordinary Poisson ordered subsets-expectation max-
imization (5 iterations; 21 subsets; 200 × 200 × 109
matrix size; 2 × 2 × 2 mm3 voxel size; 2 mm Gaussian
post-reconstruction filter).

A two-class attenuation map was generated from TOF
non-AC PET data by applying slice-by-slice head con-
touring to produce SegAC-PET images. To achieve this,
an empirical 2-D intensity thresholding scheme was con-
sidered to discriminate between background air and
the head region. The TOF non-AC PET images were
converted into SUV units and then an SUV threshold
of 0.4 was used for head contour detection. The final
head contour was slightly smoothed in 3-D to eliminate
cross-slice fluctuations. The outcome to this segmen-
tation process is a binary mask of the head region,
wherein attenuation coefficients of 0.0 cm−1 (≈−1000
Hounsfield Units) and 0.1 cm−1 (≈0 Hounsfield Units)
were assigned to voxels within background air and head
regions, respectively. Finally, SegAC-PET images were
generated by reconstructing PET raw data using the
aforementioned settings and the segmentation-based
AC maps.

Sinogram data were created using Fourier rebin-
ning (FORE) and TOF information into 13 TOF time
bins. The single-scatter simulation technique was used
within the reconstruction of CTAC-PET and SegAC-PET
images. In the single-scatter simulation (SSS) correc-
tion approach,31 the modeled coincidence events are
compared with the measured coincidence events to esti-
mate the contribution of scattered photons. To this end,

an analytical model based on Klein–Nishina formula is
applied to TOF PET data to estimate the scatter distri-
bution and factors for each line of response (LOR) and
TOF bin, adopting a grid space size of 1.75 cm in the
transaxial direction and 2 cm in the axial direction.32

To accurately calculate the scatter fraction, a tail fit-
ting algorithm is employed to estimate the percentage
of scattered events in the photopeak window based
on the fitted scatter distribution to the detected events
outside the body contour. Furthermore, the body con-
tour extracted from the CT-based attenuation correction
(AC) map served as the foundation for the calculation
of the scatter component. This calculation utilized a tail
fitting algorithm, incorporating a margin of 2 mm. To
effectively eliminate scattered photons, an energy win-
dow ranging between 435 and 650 keV was employed.32

Based on this calculation, the average scatter frac-
tion for CT-based AC and SegAC was 24.8 ± 5% and
23.4 ± 6%, respectively.

PET images’ intensities should be normalized to a
common range prior to the deep learning model training
to facilitate/harmonize the process of feature extrac-
tion. This was accomplished by first converting the
CTAC-PET, SegAC-PET, and NonAC-PET voxel inten-
sities into SUVs, then an empirical fixed value of 9
was used to scale down the intensities of CTAC-PET
and SegAC-PET images. Likewise, NonAC-PET images
were normalized by an empirical factor of 3. In an effort
to diminish the computation burden,background air was
cut off from PET images, leading to a final matrix size of
64 × 64 × 104 voxels.

2.3 Deep learning architecture

Niftynet, a dedicated platform for implementing deep
learning algorithms, was exploited for the realization of
direct AC. This platform provides modular convolutional
neural network architectures for common medical image
analysis.33 The Niftynet platform was built in Python
using the TensorFlow libraries. A high-resolution, com-
pact convolutional network34 known as HighResNet (in
the Niftynet platform) was retrieved and re-configured
in order to achieve direct PET AC estimation from
NonAC-PET or SegAC-PET images.

This neural network extracts image features at var-
ious scales/levels by using 20 residual layers while
preserving the spatial resolution of the input image by
applying dilated convolution operations. For low-level
feature extraction such as edges, convolutional kernels
of 3 × 3 voxels were employed in the initial seven con-
volution layers. These convolutional filters use dilation
factors of 2 and 4 in the next seven and six layers to
extract medium- and low-level image features, respec-
tively. A residual connection is then established to link
every two convolutional layers to form a residual block,
wherein a rectified linear unit (ReLU) activation function
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PET ATTENUATION CORRECTION STRATEGIES 873

is followed by a batch normalization.The architecture of
this network is presented in Figure S1.

As mentioned earlier, three scenarios were followed
for the implementation of direct AC in the image space:
prediction of CTAC-PET from NonAC-PET images,
SegAC-PET images,and both NonAC-PET and SegAC-
PET (using a Double-Channel input) images. A 4-fold
cross-validation framework was followed for the imple-
mentation of each scenario considering that 80 subjects
were selected at each fold in the dataset, 60 training,
and 20 test subjects. The training of the deep learn-
ing models was performed in 2-D mode using 60 ×

104 (Number of subjects × Number of slices) training
samples.

In the Niftynet platform, the residual neural network
was implemented and trained with a 64 × 64 spatial win-
dow, a learning rate of 0.001, the L2norm loss function,
the Adam optimizer, a decay of 0.0001, batch size of
30, and a sample per volume of 1. The three AC mod-
els were trained and inferred in a 2-D mode. Training of
the models was performed in 20 epochs taking 9.7 h
to reach the plateau of the training loss function. The
models’ training and inference were conducted on the
NVIDIA GTX 1060 (GPU memory of 6 GB) and the Linux
Ubuntu 18.04 LTS operating system. No transfer learn-
ing or pre-trained model was used within the training of
these models.The inference of the synthetic CTAC-PET
images took 2.8 s for each patient (one-bed position,
whole-brain study).

2.4 Evaluation strategy

The performance of the different scenarios for direct
AC was assessed against CT-based AC considered
as a reference/standard.Moreover,SegAC-PET images,
which provide a bottom line for clinically acceptable
errors, were included in this evaluation. The two-class
SegAC obtained from the classification of TOF NonAC-
PET images is considered a proxy for MRI-guided
attenuation map generation implemented on some
commercial PET/MRI scanners.28

Regarding CTAC-PET images as standard of ref-
erence, the mean error (ME), mean absolute error
(MAE), and root mean square error (RMSE) in terms of
SUV, together with a peak signal-to-noise ratio (PSNR),
and structural similarity index measure (SSIM) were
calculated for the different PET images using Equa-
tions (1)–(5), respectively. The synthetic CTAC-PET
images estimated by the deep learning models from
NonAC-PET images, SegAC-PET images, and both
NonAC-PET and SegAC-PET images (Double-Channel
input) are referred to as DEEP-NAC, DEEP-Seg, and
DEEP-DC, respectively.

ME =
1
V

∑V

q=1
(PETASC(q) − PETRef (q)) (1)

MAE =
1
V

∑V

q=1
|PETASC(q) − PETRef (q)| (2)

RSME =

√
1
V

∑V

q=1
(PETASC(q) − PETRef (q))2 (3)

PSNR = 20log10
max(PETRef ∪ PETASC)√
MSE(PETASC ∩ PETRef )

(4)

SSIM =
(2𝜇Ref𝜇ASC + c1)(2𝜎Ref,ASC + c2)

(𝜇2
Ref + 𝜇2

ASC + c1)(𝜎2
Ref + 𝜎2

ASC + c2)
(5)

Here PETASC represents either SegAC-PET or PET
images synthesized by the deep learning-based AC
models and PETRef refers to the reference CTAC-PET
images.

For region-based analysis of 18F-FDG uptake, the
radiotracer uptake was estimated in 70 brain regions
using the digital atlas of the human brain and auto-
mated anatomical labels35 implemented in the PMOD
processing platform (version 3.8, PMOD Technologies
Ltd., Zürich, Switzerland). An example of these brain
regions overlaid on a CTAC-PET image is provided in
Figure S2. For each of the 70 anatomical regions of
the brain, the mean relative and absolute (%) bias (RB
and ARB) across the 80 patients were computed using
Equations (6) and (7), respectively. Given the activity
concentration in the 70 brain regions for different PET
images,the Bland-Altman plot of uptake differences with
reference CTAC-PET images in SUV units was plot-
ted for the different PET images. All quantitative metrics
were calculated on 3-D volumes.

RBregion(%) =
(PETASC)region − (PETRef )region

(PETRef )region
× 100%

(6)

ARBregion(%) =
|||||
(PETASC)region − (PETRef )region

(PETRef )region

||||| × 100%

(7)

Moreover, radiomic features of the 70 anatomical
regions of the brain were extracted for all patients and
different synthetic PET images using the LIFEx freeware
radiomic feature calculation.36 For each brain region,
28 radiomic features were extracted, including SUV,
intensity, Grey-Level Run Length Matrix (GLRLM), Grey-
Level Zone Length Matrix (GLZLM), and Grey-Level
Co-occurrence Matrix (GLCM).

A voxel-wise joint histogram evaluation was per-
formed to illustrate the correlation among the radiotracer
distribution in CTAC-PET images and each synthetic
PET image, including DEEP-NAC, DEEP-Seg, DEEP-
DC, as well as SegAC-PET.

In order to determine the statistical significance of
the differences between models, we conducted a paired
t-test analysis for the different metrics,wherein statistical
significance was defined at P-values less than 0.05.
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874 PET ATTENUATION CORRECTION STRATEGIES

TABLE 1 Quantitative evaluation of DEEP-NAC, DEEP-Seg, DEEP-DC, and SegAC-PET images within the whole brain region for 80
patients using CTAC-PET as ground truth.

ME (SUV) MAE (SUV) RMSE (SUV) PSNR (dB) SSIM

DEEP-NAC 0.004 ± 0.09 0.152 ± 0.05 0.214 ± 0.07 19.08 ± 3.18 0.987 ± 0.01

DEEP-Seg −0.008 ± 0.07 0.128 ± 0.08 0.189 ± 0.14 20.98 ± 3.68 0.990 ± 0.01

DEEP-DC 0.002 ± 0.06 0.123 ± 0.05 0.157 ± 0.08 21.48 ± 5.35 0.992 ± 0.01

SegAC-PET −0.461 ± 0.08 0.483 ± 0.08 0.715 ± 0.14 17.24 ± 1.77 0.969 ± 0.01

Abbreviations: CTAC-PET, computed tomography-based attenuation correction-positron emission tomography; DC, Double Channel; MAE, mean absolute error;
ME, mean error; NAC, non-attenuation-corrected; PSNR, peak signal-to-noise ratio; RMSE, root mean square error; SSIM, structural similarity index measure; SUV,
standardized uptake value.

TABLE 2 P-values calculated between different AC methods for
the quantitative metrics reported in Table 1.

ME
(SUV)

MAE
(SUV)

RMSE
(SUV)

PSNR
(dB) SSIM

DEEP-NAC vs.
DEEP-Seg

0.44 < 0.02 < 0.05 < 0.01 < 0.02

DEEP-NAC vs.
DEEP-DC

< 0.05 < 0.01 < 0.01 < 0.01 < 0.01

DEEP-NAC vs.
SegAC-PET

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01

DEEP-DC vs.
DEEP-Seg

< 0.05 < 0.05 < 0.05 < 0.02 < 0.02

DEEP-Seg vs.
SegAC-PET

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01

DEEP-DC vs.
SegAC-PET

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Abbreviations: AC, attenuation correction; MAE, mean absolute error; ME, mean
error; PSNR, peak signal-to-noise ratio; RMSE, root mean square error; SSIM,
structural similarity index measure; SUV, standardized uptake value.

3 RESULTS

The quantitative evaluation of DEEP-NAC, DEEP-Seg,
DEEP-DC, as well as SegAC-PET images for the whole
brain region is summarized in Table 1 wherein the aver-
age and standard deviation (SD) of different metrics
are reported for all 80 patients. Estimation of CTAC-
PET using the deep learning model taking NonAC-PET
and SegAC-PET images simultaneously as input (noted
as DEEP-DC), exhibited superior accuracy over the AC
models taking NonAC-PET and SegAC-PET images
independently (noted as DEEP-NAC and DEEP-Seg,
respectively). However, all these three deep learning-
based AC models were superior to SegAC-PET method.
As shown in Table 2, there were statistically significant
differences between these AC methods, particularly for
MAE and RMSE metrics.

Representative views of attenuation corrected PET
images using different AC techniques, together with the
CTAC-PET images as reference and the corresponding
bias/difference maps are shown in Figure 1.

A region-wise assessment of brain PET images
transformed into a joint spatial map was performed
to investigate the quantitative accuracy of the various
AC strategies. The details of the region-based assess-

ment of brain PET images are presented in Figures 2
and 3 wherein the average SUV bias and the average
absolute SUV bias are reported for eight merged brain
regions, including the cerebellum, temporal lobes, pari-
etal lobes,thalamus,putamen,caudate nucleus,occipital
lobes, and middle frontal lobes, separately for SegAC-
PET, DEEP-NAC, DEEP-Seg, and DEEP-DC images. In
these figures, the mean SUV bias is reported for all 80
patients.SegAC-PET images exhibited the highest SUV
bias for most regions whereas DEEP-DC images exhib-
ited below 3% absolute SUV bias across all regions.The
results for the 70 brain regions across 80 patients are
provided in Figures S3–S4.

In total, 28 major radiomic features were calculated
for each of the 70 brain regions and the different
PET images. The relative errors of these features were
calculated concerning the reference radiomic features
obtained from CTAC-PET images.Figures S5–S8 depict
the relative errors of the 28 radiomic features for DEEP-
DC, SegAC-PET, DEEP-NAC, and DEEP-Seg images,
respectively.

The quantitative analysis of the activity distribution in
the 70 anatomical brain regions for the different PET
images is summarized in Bland-Altman plots presented
in Figure 4. Less bias and variance were observed
in DEEP-DC images compared to DEEP-Seg and
SegAC-PET images. However, similar SUV bias and
variance were seen in DEEP-NAC images. The regres-
sion plots in Figure 5 and voxel-wise joint histogram
evaluation of PET images revealed the superior accu-
racy of the radiotracer recovery in DEEP-DC images
wherein RMSE = 0.73 and R2 = 1 were observed com-
pared to RMSE = 1.29 and R2 = 0.977, RMSE = 1.87
and R2 = −0.999, and RMSE = 1.10 and R2 = 0.986
obtained for SegAC-PET, DEEP-Seg, and DEEP-NAC,
respectively.

4 DISCUSSION

Attenuation correction based on deep learning
approaches in PET imaging has recently attracted
much attention resulting in the proposal of various
strategies for indirect attenuation map generation
and/or direct AC of PET images.37–40 Among these
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PET ATTENUATION CORRECTION STRATEGIES 875

F IGURE 1 Representative transverse, sagittal, and coronal views of CTAC-PET, DEEP-NAC, DEEP-Seg, DEEP-DC), and SegAC-PET
along with their corresponding CT images and bias maps considering CTAC-PET images as standard of reference. CTAC-PET, computed
tomography-based attenuation correction-positron emission tomography; DC, Double Channel; NAC, non-attenuation-corrected.

F IGURE 2 Mean standardized uptake value (SUV) bias of the radiotracer concentration calculated in eight merged brain regions across 80
subjects for the different attenuation correction (AC) approaches.
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876 PET ATTENUATION CORRECTION STRATEGIES

F IGURE 3 Mean absolute standardized uptake value (SUV) bias of the radiotracer concentration calculated in eight merged brain regions
across 80 subjects for the different attenuation correction (AC) approaches.

F IGURE 4 Bland-Altman plots of activity distribution in 70 anatomical regions of the brain estimated on (a) SegAC-PET, (b) DEEP-NAC, (c)
DEEP-DC, and (d) DEEP-Seg images versus CTAC-PET images as ground truth. The average standardized uptake value (SUV) differences are
specified by the solid lines, while the dashed lines show a 95% confidence interval (CI) of the SUV differences. CTAC, computed
tomography-based attenuation correction; DC, Double Channel; NAC, non-attenuation-corrected; PET, positron emission tomography.
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PET ATTENUATION CORRECTION STRATEGIES 877

F IGURE 5 Joint histogram analysis of: (a) DEEP-NAC, (b) DEEP-Seg, (c) DEEP-DC, and (d) SegAC-PET images versus the reference
CTAC-PET images. DC, Double Channel; NAC, non-attenuation-corrected; PET, positron emission tomography.

strategies, the direct application of AC on NonAC-PET
images in the image domain is of particular interest.
This approach does not require anatomical imaging,
which is appealing for dedicated brain PET scanners.
This approach is less sensitive to common sources
of errors in conventional CT-based PET attenuation
correction, for example mismatch between emission
and transmission/MR images, body truncation, and
inaccurate scatter correction.10,27,41–43 In this regard,
this study aimed to investigate the use of simple attenu-
ation and scatter-corrected PET images to aid the direct
application of AC in the image space. The motivation
behind this investigation was that a simple two-class
attenuation map can be simply generated from NonAC-
PET images to reconstruct SegAC-PET images. This
auxiliary attenuation map would be in perfect alignment
with the emission data since it is generated directly from
the PET data.

In this study, we assessed a segmentation-based
method, a simplified approach encompassing air and
water, synonymous with soft tissue. In the two-class

attenuation correction (2-class AC) segmentation, bony
structures were represented by a filling of soft tissue
and/or water. Contrasting this, more sophisticated MR-
guided AC methods have the capability to discern bony
structures by establishing a distinct class for bone tis-
sue. To showcase the efficacy of the Double-Channel
direct, we conducted a comparative analysis with a
segmentation approach that incorporates a separate
class for bone tissue. For this purpose, patient CT
images underwent segmentation into background air,
soft tissue, and bony structures. The predefined atten-
uation values of 0.0 cm−1 (≈−1000 Hounsfield Units),
0.1 cm−1 (≈0 Hounsfield Units), and 0.125 cm−1 (≈460
Hounsfield Units) were assigned for background air,
soft tissue, and bone, respectively.25 This segmenta-
tion AC map, referred to as BoneAC, was juxtaposed
against SegAC and DEEP-DC to underscore the supe-
riority of the deep learning method. Table S1 provides a
quantitative evaluation of DEEP-DC, BoneAC-PET, and
SegAC-PET images across the entire brain region for
80 patients, using CTAC-PET as the ground truth. The
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878 PET ATTENUATION CORRECTION STRATEGIES

accompanying P-values in the table illuminate the supe-
rior performance of the deep learning approach in the
image domain.

Segmentation-based methods involve assigning a
predetermined attenuation coefficient to distinct tissue
classes, disregarding the inherent variability in attenu-
ation coefficients among different patients. In contrast,
approaches that incorporate patient-specific attenu-
ation coefficients in segmentation, particularly those
accounting for bony structures, demonstrate a reduced
bias compared to traditional methods. Deep learning
techniques, in particular, have shown promise in miti-
gating segmentation errors by learning and adapting
to the inherent variability in attenuation coefficients
across individuals. This adaptability contributes to more
accurate and patient-specific attenuation correction,
presenting a notable advancement over rigid,predefined
coefficient assignments.26

All three deep learning-based AC approaches eval-
uated in this study outperformed noticeably the
segmentation-based AC map technique. The deep
learning-based methods exhibited very close attenu-
ation correction performances. However, the Double-
Channel deep learning method simultaneously consid-
ering NonAC-PET and SegAC-PET images as input
showed slightly superior accuracy, leading to an overall
lower RMSE in the whole brain (Table 1) and voxel-wise
analysis (Figure 5). The differences were statistically
significant between the Double-Channel deep learning-
based method and other methods for key metrics, such
as the RMSE and the SUV bias in brain regions.

The two-class AC map is far from perfect. Neverthe-
less, it could help to partly compensate for the effect
of attenuated and scattered photons on PET images.
Therefore, the estimation of PET AC from SegAC-PET
would face less complexity. However, relying only on
SegAC-PET images has the drawback of losing the
original information that lies in NonAC-PET images. In
this regard, any errors in SegAC-PET images caused
by miss-segmentation, erroneous AC map, or incor-
rect scatter correction would be reflected in the output
of the deep learning method relying only on SegAC-
PET images. A Double-Channel deep learning method
could benefit from the information existing in the com-
bination of NonAC-PET and SegAC-PET images. In
this sense, SegAC-PET helps to reduce the complex-
ity of the AC problem, and still the information lying
in the original NonAC-PET images would aid the deep
learning approach to find an optimal solution. More-
over, in the case of any error in SegAC-PET images,
for example, due to miss-segmentation, NonAC-PET
images have sufficient information for the prediction of
an acceptable/tolerable CTAC-PET image.

The deep learning AC methods in this work are
entirely automated and attenuation corrected images
are directly inferenced from NonAC-PET images in a
few seconds (2.1 s) within the image domain without

the need for supplementary structural data.Considering
that scatter correction using the single-scatter correc-
tion algorithm takes more than 1 min (up to 150 s) in
TOF PET imaging,10,44 the fast inference time of deep
learning approaches would be considered an advantage
for our methods.

Correction of scattered photons is a signifi-
cant/important component of the AC process. Due
to the model-based and analytic nature of scatter esti-
mation, the scatter distribution and amplitude depend on
the algorithm and parameters used for the calculation of
scattered photons. In this regard, the training dataset for
direct AC in the image domain should be created using
the same scatter correction algorithm and parameters
to avoid discrepancies between the different training
subjects. Moreover, the same scatter correction setting
should be employed for SegAC-PET images (to be
used in the Double-Channel deep learning approach)
to create a consistent model. Previous studies have
shown that the estimation of scattered events (or gen-
eration of scattered sinogram) is not highly sensitive
to slight modifications/simplifications in the attenuation
maps. In this regard, the scatter estimation (scatter
sinogram generation) from the reference CT image and
a segmentation-based method, such as the two-class
AC map, would be in high agreement (scatter fractions
for CT-based AC and SegAC were 24.8 ± 5% and
23.4 ± 6%, respectively). Since SegAC-PET images
contain almost complete/sufficient information about
scattered events, the Double-Channel deep learn-
ing model would be able to offer an overall superior
solution due to the reduced complexity of the AC
problem.

5 CONCLUSION

This work aimed to investigate the direct application of
AC in the image space. This was achieved by training a
deep learning network for direct AC using three different
inputs, wherein the input of the network was assigned
to a single NonAC-PET image, single SegAC-PET
(obtained from NonAC-PET using an AC map including
background air and soft-tissue), and the two NonAC-
PET and SegAC-PET images in a Double-Channel
model. In general, the Double-Channel deep learning
approach which simultaneously took NonAC-PET and
SegAC-PET images as input, exhibited superior accu-
racy for activity concentration retrieval in brain imaging.
The Double-Channel deep learning approach led to an
SUV bias of less than 4% in various regions of the
brain, whereas the segmentation-based AC map led to
an SUV bias of over 13%. The Double-Channel deep
learning network, which relies on the two NonAC-PET
and SegAC-PET images, would offer improved accu-
racy in AC modeling, compared to a model using only
NonAC-PET or SegAC-PET images.

 24734209, 2024, 2, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.16914 by B

ibliotheque de l'U
niversite de G

eneve, D
ivision de l'inform

ation, W
iley O

nline L
ibrary on [08/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PET ATTENUATION CORRECTION STRATEGIES 879

ACKNOWLEDGMENTS
This work was supported by the Swiss National Science
Foundation under grant SNSF 320030_176052 and
the Private Foundation of Geneva University Hospitals
under grant RC-06−01.

CONFL ICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

REFERENCES
1. Brusaferri L, Bousse A, Efthimiou N, et al. Potential benefits of

incorporating energy information when estimating attenuation
from PET data. Paper presented at: 2017 IEEE Nuclear Sci-
ence Symposium and Medical Imaging Conference (NSS/MIC);
October 21-28, 2017; Atlanta, GA.

2. Efthimiou N, Karp JS, Surti S. Data-driven, energy-based method
for estimation of scattered events in positron emission tomogra-
phy. Phys Med Biol. 2022;67(9):095010.

3. Brusaferri L, Bousse A, Emond EC, et al. Joint activity and atten-
uation reconstruction from multiple energy window data with
photopeak scatter re-estimation in non-TOF 3-D PET. IEEE Trans
Radiat Plasma Med Sci. 2020;4(4):410-421.

4. Hamill JJ. Phantom evaluation of energy-based scatter estima-
tion in an SiPM PET scanner. Paper presented at: 2020 IEEE
Nuclear Science Symposium and Medical Imaging Conference
(NSS/MIC); October 31-November 7, 2020; Boston, MA.

5. Popescu LM, Lewitt RM, Matej S, Karp JS. PET energy-
based scatter estimation and image reconstruction with energy-
dependent corrections. Phys Med Biol. 2006;51(11):2919.

6. Mehranian A, Arabi H, Zaidi H. Vision 20/20: magnetic resonance
imaging-guided attenuation correction in PET/MRI: challenges,
solutions, and opportunities. Med Phys. 2016;43(3):1130-1155.

7. Wienhard K, Schmand M, Casey M, et al. The ECAT HRRT: per-
formance and first clinical application of the new high resolution
research tomograph. IEEE Trans Nucl Sci. 2002;49(1):104-110.

8. González AJ, Sánchez F, Benlloch JM. Organ-dedicated molec-
ular imaging systems. IEEE Trans Radiat Plasma Med Sci.
2018;2(5):388-403.

9. Lee JS. Technical advances in current PET and hybrid imaging
systems. Open Nucl Med J. 2010;2(192-208):14.

10. Yang J, Park D, Gullberg GT, Seo Y. Joint correction of attenua-
tion and scatter in image space using deep convolutional neural
networks for dedicated brain 18F-FDG PET. Phys Med Biol.
2019;64(7):075019.

11. Siegel S, Dahlbom M. Implementation and evaluation of a cal-
culated attenuation correction for PET. IEEE Trans Nucl Sci.
1992;39(4):1117-1121.

12. Bergström M, Litton J, Eriksson L, Bohm C, Blomqvist G. Deter-
mination of object contour from projections for attenuation
correction in cranial positron emission tomography. J Comput
Assist Tomogr. 1982;6(2):365-372.

13. Yang J, Wiesinger F, Kaushik S, et al. Evaluation of sinus/edge-
corrected zero-echo-time–based attenuation correction in brain
PET/MRI. J Nucl Med. 2017;58(11):1873-1879.

14. Kops ER, Herzog H, Alternative methods for attenuation cor-
rection for PET images in MR-PET scanners. Paper presented
at: 2007 IEEE Nuclear Science Symposium Conference Record;
October 26-November 3, 2007; Honolulu, HI.

15. Sekine T, Buck A, Delso G, et al. Evaluation of atlas-based
attenuation correction for integrated PET/MR in human brain:
application of a head atlas and comparison to true CT-based
attenuation correction. J Nucl Med. 2016;57(2):215-220.

16. Kobayashi T, Kitamura K, A solution for scaling problem in
joint estimation of activity and attenuation. Paper presented at:
2017 IEEE nuclear science symposium and medical imaging
conference (NSS/MIC); October 21-28, 2017; Atlanta, GA.

17. Liu F, Jang H, Kijowski R, Zhao G, Bradshaw T, McMillan AB. A
deep learning approach for 18F-FDG PET attenuation correction.
EJNMMI physics. 2018;5(1):1-15.

18. Armanious K, Hepp T, Küstner T, et al. Independent attenuation
correction of whole body [18F] FDG-PET using a deep learn-
ing approach with generative adversarial networks.EJNMMI Res.
2020;10(1):1-9.

19. Hashimoto F, Ito M, Ote K, Isobe T, Okada H, Ouchi Y. Deep
learning-based attenuation correction for brain PET with various
radiotracers. Ann Nucl Med. 2021;35:691-701.

20. Choi B-H, Hwang D, Kang S-K, et al. Accurate transmission-
less attenuation correction method for amyloid-β brain PET using
deep neural network. Electronics. 2021;10(15):1836.

21. Gandia-Ferrero MT, Torres-Espallardo I, Martínez-Sanchis B,
et al. Objective image quality comparison between brain-
dedicated PET and PET/CT scanners. J Med Syst. 2023;47(1):
88.

22. Hwang D, Kim KY, Kang SK, et al. Improving the accuracy
of simultaneously reconstructed activity and attenuation maps
using deep learning. J Nucl Med. 2018;59(10):1624-1629.

23. Shiri I, Ghafarian P, Geramifar P, et al. Direct attenuation cor-
rection of brain PET images using only emission data via a
deep convolutional encoder-decoder (Deep-DAC). Eur Radiol.
2019;29:6867-6879.

24. Dong X, Lei Y, Wang T, et al. Deep learning-based attenuation
correction in the absence of structural information for whole-
body positron emission tomography imaging. Phys Med Biol.
2020;65(5):055011.

25. Ouyang J, Chun SY, Petibon Y, Bonab AA, Alpert N, El Fakhri G.
Bias atlases for segmentation-based PET attenuation correction
using PET-CT and MR. IEEE Trans Nucl Sci. 2013;60(5):3373-
3382.

26. Arabi H, Zaidi H. MRI-guided attenuation correction in torso
PET/MRI: assessment of segmentation-, atlas-, and deep
learning-based approaches in the presence of outliers. Magn
Reson Med. 2022;87(2):686-701.

27. Arabi H, Bortolin K, Ginovart N, Garibotto V, Zaidi H. Deep
learning-guided joint attenuation and scatter correction in multi-
tracer neuroimaging studies.Hum Brain Mapp.2020;41(13):3667-
3679.

28. Zaidi H, Ojha N, Morich M, et al. Design and performance evalu-
ation of a whole-body ingenuity TF PET–MRI system. Phys Med
Biol. 2011;56(10):3091.

29. Bortolin K, Arabi H, Zaidi H, Deep learning-guided attenuation
and scatter correction without using anatomical images in brain
PET/MRI. Paper presented at: 2019 IEEE Nuclear Science Sym-
posium and Medical Imaging Conference (NSS/MIC); October
26-November 2, 2019; Manchester, UK.

30. Burgos N, Thielemans K, Cardoso MJ, et al. Effect of scatter cor-
rection when comparing attenuation maps: application to brain
PET/MR. Paper presented at: 2014 IEEE Nuclear Science Sym-
posium and Medical Imaging Conference (NSS/MIC); November
8-15, 2014; Seattle, WA.

31. Watson CC. New, faster, image-based scatter correction for 3D
PET. IEEE Trans Nucl Sci. 2000;47(4):1587-1594.

32. Jakoby B, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend
D. Physical and clinical performance of the mCT time-of-flight
PET/CT scanner. Phys Med Biol. 2011;56(8):2375.

33. Gibson E, Li W, Sudre C, et al. NiftyNet: a deep-learning plat-
form for medical imaging. Comput Methods Programs Biomed.
2018;158:113-122.

34. Li W, Wang G, Fidon L, Ourselin S, Cardoso MJ, Vercauteren T,
On the compactness, efficiency, and representation of 3D con-
volutional networks: brain parcellation as a pretext task. Paper
presented at: International conference on information processing
in medical imaging 2017.

35. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Auto-
mated anatomical labeling of activations in SPM using a

 24734209, 2024, 2, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.16914 by B

ibliotheque de l'U
niversite de G

eneve, D
ivision de l'inform

ation, W
iley O

nline L
ibrary on [08/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



880 PET ATTENUATION CORRECTION STRATEGIES

macroscopic anatomical parcellation of the MNI MRI single-
subject brain. Neuroimage. 2002;15(1):273-289. Preprint posted
online January 05, 2002.

36. Nioche C, Orlhac F, Boughdad S, et al. LIFEx: a freeware for
radiomic feature calculation in multimodality imaging to accel-
erate advances in the characterization of tumor heterogeneity.
Cancer Res. 2018;78(16):4786-4789. Preprint posted online July
01, 2018.

37. Ladefoged CN, Hansen AE, Henriksen OM, et al. AI-driven atten-
uation correction for brain PET/MRI: clinical evaluation of a
dementia cohort and importance of the training group size.
Neuroimage. 2020;222:117221.

38. Blanc-Durand P, Khalife M, Sgard B, et al. Attenuation
correction using 3D deep convolutional neural network for
brain 18F-FDG PET/MR: comparison with Atlas, ZTE and
CT based attenuation correction. PLoS One. 2019;14(10):
e0223141.

39. Ladefoged CN, Marner L, Hindsholm A, Law I, Højgaard L,
Andersen FL. Deep learning based attenuation correction of
PET/MRI in pediatric brain tumor patients: evaluation in a clinical
setting. Front Neurosci. 2019;12:1005.

40. Arabi H, Zeng G, Zheng G, Zaidi H. Novel adversarial semantic
structure deep learning for MRI-guided attenuation correction in
brain PET/MRI. Eur J Nucl Med Mol Imaging. 2019;46(13):2746-
2759.

41. Lei Y, Wang T, Dong X, et al. PET attenuation correction
using non-AC PET-based synthetic CT. In: Guang-Hong Chen,
Hilde Bosmans, eds. Medical Imaging 2020: Physics of Medical
Imaging 2020. SPIE;2020.

42. Arabi H, Zaidi H. Truncation compensation and metallic den-
tal implant artefact reduction in PET/MRI attenuation correction
using deep learning-based object completion. Phys Med Biol.
2020;65(19):195002.

43. Yang J, Sohn JH, Behr SC, Gullberg GT, Seo Y. CT-less direct
correction of attenuation and scatter in the image space using
deep learning for whole-body FDG PET: potential benefits and
pitfalls. Radiol Artif Intell. 2020;3(2):e200137.

44. Watson C. Extension of single scatter simulation to scat-
ter correction of time-of-flight PET. IEEE Trans Nucl Sci.
2007;54(5):1679-1686.

SUPPORTI NG I NFORMATI ON
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Jahangir R, Kamali-Asl
A, Arabi H, Zaidi H. Strategies for deep
learning-based attenuation and scatter
correction of brain 18F-FDG PET images in the
image domain. Med Phys. 2024;51:870–880.
https://doi.org/10.1002/mp.16914

 24734209, 2024, 2, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.16914 by B

ibliotheque de l'U
niversite de G

eneve, D
ivision de l'inform

ation, W
iley O

nline L
ibrary on [08/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/mp.16914

	Strategies for deep learning-based attenuation and scatter correction of brain 18F-FDG PET images in the image domain
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | PET/CT data acquisition
	2.2 | Data preparation
	2.3 | Deep learning architecture
	2.4 | Evaluation strategy

	3 | RESULTS
	4 | DISCUSSION
	5 | CONCLUSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	REFERENCES
	SUPPORTING INFORMATION


