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Abstract
In this study, the ability of radiomics features extracted from myocardial perfusion imaging with SPECT (MPI-SPECT) 
was investigated for the prediction of ejection fraction (EF) post-percutaneous coronary intervention (PCI) treatment. A 
total of 52 patients who had undergone pre-PCI MPI-SPECT were enrolled in this study. After normalization of the images, 
features were extracted from the left ventricle, initially automatically segmented by k-means and active contour methods, 
and finally edited and approved by an expert radiologist. More than 1700 2D and 3D radiomics features were extracted 
from each patient’s scan. A cross-combination of three feature selections and seven classifier methods was implemented. 
Three classes of no or dis-improvement (class 1), improved EF from 0 to 5% (class 2), and improved EF over 5% (class 3) 
were predicted by using tenfold cross-validation. Lastly, the models were evaluated based on accuracy, AUC, sensitivity, 
specificity, precision, and F-score. Neighborhood component analysis (NCA) selected the most predictive feature signa-
tures, including Gabor, first-order, and NGTDM features. Among the classifiers, the best performance was achieved by the  
fine KNN classifier, which yielded mean accuracy, AUC, sensitivity, specificity, precision, and F-score of 0.84, 0.83, 0.75, 
0.87, 0.78, and 0.76, respectively, in 100 iterations of classification, within the 52 patients with 10-fold cross-validation. 
The MPI-SPECT-based radiomic features are well suited for predicting post-revascularization EF and therefore provide a 
helpful approach for deciding on the most appropriate treatment.
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MI  Myocardial infarction
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Cubic SVM  Cubic support vector machine
ECR  Early coronary revascularization
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Introduction

Cardiovascular diseases are the most threatening diseases glob-
ally and cause mortality [1]. Coronary artery disease (CAD) 
is one of the primary causes of cardiovascular diseases [2]. 
About half of the heart failure cases have left ventricular dys-
function, as indicated by estimates of 650,000 new heart failure 
cases annually. For more than two-thirds of the patients with 
left ventricle (LV) dysfunction, CAD is the leading cause [3]. 
Myocardial infarction (MI) leads to LV systolic dysfunction, 
correspondingly LV dilatation, and eventually heart failure, 
leading to decreased quality of life [4]. Percutaneous coronary 
intervention (PCI), coronary artery bypass graft (CABG) sur-
gery, and medical therapy are the main recommended treatment 
plans for CADs [5, 6]. Revascularization improves the viable 
myocardium function [7], but it is not feasible or beneficial 
for all patients [8]. Aside from being costlier than PCI, CABG 
requires longer hospitalization and has more complications. 
Nevertheless, an effective method is needed to predict the out-
come of revascularization before PCI. An important parameter 
for evaluating cardiac function is the ejection fraction (EF), 
which is the amount of blood ejected from the heart. EF, as 
an indication of LV systolic efficiency, is determined by the 
calculation of LV end-diastolic and end-systolic volumes. Even 
though it usually refers to the LV, it can also be a biomarker of 
the pumping ability of the heart as well as types of heart failure.

Stenosis of coronary arteries is being diagnosed by coro-
nary angiography (CAG), which is the gold standard approach 
[9]. However, CAG is costly and invasive, and it comes with 
complications such as infection and causing damage to the 
catheterized artery, thus, quests alternative approaches. The 
myocardial perfusion imaging with single-photon emission 
computed tomography (MPI-SPECT) test is often considered 
one of the most accurate and essential non-invasive cardiac 
imaging tests. The MPI-SPECT provides crucial diagnosing 
information for a wide variety of cardiovascular diseases and 
helps assess treatment effectiveness. MPI-SPECT is primar-
ily used to diagnose CAD, stratify patients based on their risk 
for CAD, assess therapy and myocardial viability, and guide 
patients through a PCI or CABG [10]. MPI-SPECT has been 
the most regularly employed non-invasive imaging technique 
for assessing CAD at low or intermediate risk [11]. Pharma-
cological stress testing must be considered in cases where 
exercise stress testing is contraindicated. The most commonly 
used radiopharmaceuticals are Thallium-201 (201Tl chloride), 
Technetium-99m sestamibi, and Technetium-99m tetrofos-
min. In order to assess viability, Thallium-201 is favored, but 
is not preferred to evaluate the LV. Technetium-99m sestamibi 
is preferred for evaluating LV function compared to Thal-
lium-201 [12–14].

Radiomics is an emerging field in which extracting dif-
ferent features from digital images is used for prediction, 

diagnosis, and prognosis via machine learning approaches 
[12, 15–20]. The role of radiomics and machine learning in 
cardiology has been demonstrated in several studies via dif-
ferent imaging modalities. Arsanjani et al. [21] employed a 
model-based approach to determine whether early revascu-
larization can be effectively predicted using clinical data and 
quantitative features derived from perfusion SPECT imaging. 
The model was trained on various clinical and imaging vari-
ables, including patient demographics, clinical history, and 
SPECT image features. The primary endpoint was the need for  
revascularization. The machine learning model achieved an 
area under the ROC curve (AUC) of 0.81 for the prediction of 
revascularization. The most important predictors of revascu-
larization were combined supine/prone total perfusion deficit 
(TPD) and supine stress TPD. However, there were some limi-
tations in this study. The MPS protocol used was dual-isotope 
imaging, which is limited by difficulties in comparing rest and 
stress images due to differences in image resolution and patient 
radiation exposure. Moreover, the machine learning model was 
based on global perfusion abnormalities rather than regional 
abnormalities. Wang et  al. [22] utilized LV tomograms 
obtained from D-SPECT-MPI for auxiliary diagnosis to assess 
radiomics methods' feasibility and effectiveness. The predictive  
models had a sensitivity within [86–91%] and a specificity 
within [91–95%]. These results suggest that radiomics has the 
potential as a useful tool for the auxiliary diagnosis of myo-
cardial ischemia in patients with CAD. Nevertheless, it suffers 
from some limitations. One of the limitations was delineating 
lesions manually and defining the edges of ischemic areas, 
which had obvious boundaries that caused under and over-
estimation. Ashrafinia et al. [23] investigated the prediction 
of coronary artery calcification using MPI-SPECT radiomic 
features. They have also indicated a significant correlation 
between perfusion heterogeneity and coronary artery calcifi-
cation scores. While the study did find that radiomics analysis 
can help identify the presence of significant coronary artery 
stenosis, it did not investigate whether this information can 
improve patient outcomes. Based on non-contrast Cine car-
diac magnetic resonance (Cine-CMR) images, Avard et al. 
[24] developed a machine-learning approach to differentiate 
MI and viable tissues/normal cases. Their study showed that 
using radiomics analysis on non-contrast Cine-CMR images 
makes MI detection more accurate. The best-performing 
machine learning algorithm achieved an area under the ROC 
curve of 0.93 (accuracy = 0.86, recall = 0.87, precision =  
0.93, and F1-score = 0.90) by logistic regression in multi-
variate analysis, indicating high accuracy in detecting MI. Fur-
thermore, the study also investigated the individual radiomics 
features that were most strongly associated with the presence 
of MI. They found that features related to the myocardium’s 
intensity, texture, and shape were most strongly associated 
with MI. However, the study did not provide detailed clinical 
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information about the patients with MI, such as the sever-
ity of their condition or their medical history, which could 
have impacted the radiomics features and the performance of  
the machine learning algorithms. Most recently, Arian et al.  
[25] utilized radiomic features extracted from late gadolinium 
enhancement on cardiac MR (LGE-CMR) images to predict 
elevations in the myocardial function of patients undergoing 
CABG and achieved promising results. The model had an 
AUC of 0.78 and a sensitivity of 82%. Nevertheless, the study 
did not evaluate the impact of potential confounding factors, 
such as medication use, comorbidities, and lifestyle factors, 
on the relationship between radiomic features and changes 
in myocardial function after CABG. Sabouri et al. [26] high-
lighted MPI-SPECT radiomics potential in identifying the 
left ventricular contractile pattern, which was shown to be 
associated with cardiac resynchronization therapy response. 
The results of the study showed that the machine learning 
algorithms were able to accurately classify SPECT images 
into U-shaped and non-U-shaped left ventricular contractile 
patterns with high accuracy. The MLP algorithm achieved the 
highest AUC (80%) and sensitivity (85%) among ConQuaFea 
(conventional quantitative features, such as phase analysis and 
QGS features) models, whereas gradient boosting achieved an 
AUC of 78% and sensitivity of 92% among combined models 
(radiomics + ConQuaFea). However, the criteria were based 
on the left ventricular contractile pattern and didn't consider 
factors, such as the lead location for CRT.

In this study, the main goal was to test whether radiomic 
features can accurately predict post-PCI EF and differentiate 
revascularization outcomes and evaluate the accuracy, AUC, 
sensitivity, specificity, precision, and F-score of the models 
developed using the radiomic features. This study hypoth-
esizes that radiomic features extracted from MPI-SPECT 
can accurately predict post-PCI EF and differentiate between 
patients who will experience no or dis-improvement, those 
with improved EF of less than 5%, and those with improved 
EF over 5%. Furthermore, by using machine learning algo-
rithms to aid physicians with medical image interpretation, 
this computer-aided diagnostic approach may improve the 
accuracy of diagnosis. Ultimately, we hypothesize that this 
approach can lead to better treatment decisions and out-
comes for patients undergoing revascularization procedures.

Materials and Methods

An infographic illustration of the workflow followed in this 
study is presented in Fig. 1.

Study Population

Patient’s clinical and imaging data have been collected 
retrospectively at Rajaie Cardiovascular Medical and 

Research Center, Tehran, Iran. This study was conducted in 
accordance with international ethical standards considering 
the institutional recommendations and the 1964 Helsinki 
declaration and its later amendments. This retrospective 
study was approved by the ethics committee of Iran Univer-
sity of Medical Sciences (IR.IUMS.FMD.REC.1400.087). 
Inclusion criteria included patients who had both prior and 
post-PCI echocardiographic reports, with an interval of 
fewer than 6 months between MPI-SPECT, echocardiogra-
phy, and PCI. In addition, only patients who had undergone 
a 99mTc-MIBI scan were enrolled in this study, whereas 
patients who had undergone a 201Tl scan were excluded. 
Moreover, we excluded studies where significant extracar-
diac activity or motion artifacts caused by patient move-
ment were present. Eventually, 52 patients were enrolled. 
The characteristics of the patients are presented in Table 1. 
For categorical data (gender), we used Fisher’s exact test 
due to the small sample size and the expected frequency 
count not being obtained in the chi-square test. For con-
tinuous data analysis, we employed the Wilcoxon rank-
sum test, which is appropriate for non-parametric data. 
Our results indicate no statistically significant difference 
between pairs of groups except for one case, specifically 
the post-EF comparison between class 1 and class 3.

Data acquisition

All registered patients underwent conventional MPI with 
electrocardiography-gated SPECT (gSPECT) for clinical 
purposes. A gSPECT scan was conducted after injection of 
15–20 mCi of Technetium-99 m sestamibi. Planar SPECT 
images were acquired using a dual-headed gamma camera 
(Symbia T2, Siemens Healthcare) installed with automatic 
body contouring of 135 (RAO) to − 45 (LAO) with a stand-
ard resting protocol. The cardiac-gated protocol was used 
to obtain 32 projections (30 s per projection and 16-bin gat-
ing) of 64 by 64 matrix size (0.48 pixels at zoom 1.33) and 
180° from right anterior to left anterior oblique. The system 
was assumed to have a 9.7% energy resolution, and counts 
were collected between 112 and 168 keV (140 keV–20 keV 
energy windows). Throughout the image acquisition, the 
patients were asked to stay in the supine position. Images 
were reconstructed using filtered back projection (FBP) with 
a Butterworth post-reconstruction filter (order = 5, cutoff 
frequency of 0.45 cycles/mm).

PCI Protocols

The CAG was done for all patients via radial or femoral artery 
approaches. The PCI (angioplasty with stent) was done for those 
with significant CAD. A significant CAD was defined as more 
than 50% narrowing of the diameter of the lumen of the main 



1351Journal of Digital Imaging (2023) 36:1348–1363 

1 3

coronary artery and/or more than 70% diameter narrowing of the 
lumen of the left anterior descending coronary artery, left cir-
cumflex artery, or right coronary artery. As the ground truth of 
post-revascularization improvement, echocardiography was per-
formed prior to and post-PCI. EF values of echocardiographic 

reports were considered in three classes; class 1: no increase or 
decreased EF, class 2: 5% improvement, and class 3: improved 
EF of over 5% (EF was reported by steps of 5% by the echocardi-
ography). The number of patients per class and mean ± standard 
deviation of their EF pre- and post-PCI are presented in Table 1.

Fig. 1  An infographic flowchart summarizing different steps of the study from data retrieving to preprocessing, feature extraction, classification, 
and finally, performance evaluation of the proposed models

Table 1  Characteristics of patients based on three different classes. C1C2, C1C3, C2C3 indicate pairs of class 1 and class 2, pairs of class 1 and 
class 3, and pairs of class 2 and class 3, respectively

No or dis-improvement 
(class 1)

Improved EF from 0 to 5% 
(class 2)

Improved EF of over 5% 
(class 3)

P values

Number 24 12 16
Age (years) 59.58 ± 8.93 53.67 ± 11.53 60.38 ± 10.00 C1C2: 0.13

C1C3: 0.6
C2C3: 0.09

Gender (male/female) 18/6 9/3 10/6 0.7256
Ejection fraction (pre-PCI) (Echo) (%) 45.83 ± 11.24 43.75 ± 7.11 39.06 ± 7.75 C1C2: 0.32

C1C3: 0.06
C2C3: 0.17

Ejection fraction (post-PCI) (Echo) (%) 42.71 ± 10.70 48.75 ± 7.11 50.00 ± 6.61 C1C2:0.05
C1C3: 0.02
C2C3: 0.07
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Preprocessing and Segmentation

Before feature extraction, the gray-level normalization 
method was applied to all images. Equation 1 defines gray-
level normalization between zero and one.

Automatic segmentation was applied to the axial view of 
the SPECT images to delineate the left ventricle. At first, the 
k-means clustering algorithm was applied. Regions of inter-
est (ROIs) and some regions outside ROIs were selected. 
Secondly, we used Snake active contour model [27] to define 
the delineations better. Finally, an expert radiologist edited 
and confirmed the automatic segmentation of the left LV to 
ensure its validity.

Feature Extraction

The feature extraction involved extracting 2D and 3D fea-
tures from short-axis images using two different tools, 
including in-house-generated codes via MATLAB 2019b 
(Mathworks, Natick, MA, USA), and standardized environ-
ment for radiomics analysis (SERA), which is a MATLAB-
based package based on guidelines from the Image Bio-
marker Standardization Initiative (IBSI) [28, 29]. Figure 1 
illustrates an overview of the radiomic analysis pipeline that 
attempts to predict the effect of revascularization on EF. 
Using our in-house-generated feature extractor, per-pixel 
(extracted for each pixel using a kernel around the pixel slid-
ing over the image) and per-image (extracted from the whole 
image) 2D textural features were extracted from normal-
ized images. These features included three different feature 
groups, namely, Haralick gray level co-occurrence matrix 
(GLCM) and LAWS features which are texture-based, and 
Gabor features which are transform-based.

For per-pixel features, kernels of sizes 3 × 3, 5 × 5, and 7 × 7 
were considered for calculating each feature, and then statisti-
cal analysis was exerted on extracted values from the pixels of 
each 2D image. Statistical parameters were average, variances, 
median, skewness, and kurtosis. For the co-occurrence matri-
ces, three parameters were considered and tuned: distance:  
1, orientations: 0, 45, 90, 135, and quantization levels: 4, 8,  
and 16 [30–32]. LAWS texture features can effectively 
measure edges, waves, ripples, levels, and spots. It contains 
three vectors that indicate averaging, edges, and spots. These 
vectors are convolved with themselves and with each other 
leading to five vectors: level, edge, spot, ripple, and wave. 
LAWS mask is a variable parameter through the image. In  
our study, we used masks of different sizes.

In addition to our in-house generated feature extractor, 
radiomic features were extracted using the SERA package. It 

(1)I�(x, y) =
I(x, y) − min(I(x, y))

max(I(�, �)) − min(I(x, y))

extracted 269 radiomic features, including 50 statistical first-
ordered, 29 morphological, and 190 3D textural features (50 
GLCM, 32 GLRLM, 32 GLSZM, 32 GLDZM, 10 NGTDM, 
and 34 NGLDM). All feature values were normalized by 
z-score. Table 2 represents the extracted features and their 
descriptions.

Feature Selection

Feature selection methods were applied to reduce the risk 
of overfitting and avoid the curse of dimensionality. neigh-
borhood component analysis (NCA), minimum redundancy 
maximum relevance (MRMR), and least absolute shrink-
age and selection operator (LASSO) were feature selection 
methods that were used. Feature selectors were set to select 
3 to 10 features, and feature sets of 7 features achieved the 
best results. In order to compare feature values between 
the classes, as a non-parametric statistical test, the Wil-
coxon rank-sum was used between groups. In addition, the 
Wilcoxon rank-sum test with p value < 0.05 was used to 
determine if the difference was statistically significant. The 
abbreviated names of the selected features along with their 
information, including the type, group, defined parameters 
(descriptors) of the features, and the statistical parameter 
(average, median, variance, skewness, kurtosis) used in the 
image features (quantifying the features which were in the 
form of images), are given in the Supplementary Table A.1.

Classifiers

Following feature selection, seven different classifiers, includ-
ing cosine K-nearest neighbors (cosine KNN), fine KNN, sub-
space KNN, cross-entropy decision trees, RUSBoosted trees, 
cubic support vector machine (cubic SVM), and random forest 
were used for classification, and they were repeated across 
100 repetitions of 10-fold cross-validation using bootstrapped 
subsets. In addition, the reported results are the average of 
these 100 repetitions. In other words, at each iteration of clas-
sification, training, and validation set were randomly selected, 
and after 100 repetitions of classification, the results of 100 
times of classifications were averaged (Tables 5 and 6). This 
might help to evaluate the performance of a classifier under 
different conditions, such as variations in the training data or 
the classifier’s hyperparameters. Classifiers based on the top 
seven discriminating features were optimized on the training 
set. In the validation set, the class labels of EFs were pre-
dicted using these classifiers. The training set consisted of 46 
patients, while the validation set consisted of 6 patients. Every 
time the validation set is selected, the subjects are collected in 
such a way to have an equal number of patients from all three 
classes (stratified with respect to the class). In other words, 
there are 2 subjects from each class in the validation set.
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Results

Feature Analysis

Features selected by each feature selection algorithm are 
listed in Table 3. For example, Gabor_Median_W5O135 
(WL = 5.66, orientation = 135) and Gabor_Average_
W45O45 (WL = 45.25, orientation = 45) were selected 
by more than one feature selection algorithm. Among the 
algorithms, NCA performed better based on comparing 
classification results. Table 4 shows the details of the 
seven best-selected features by NCA. Features were cho-
sen from different types of features, families, and groups. 
The median of Gabor with wavelength = 5.66 and ori-
entation = 135 degrees, and an average of Gabor with 
wavelength = 45.25 and orientation = 45 degrees, both 
performed on the 2D image, were the most predictive fea-
tures. The last two columns list the feature importance 
values and the p values between pairs of classes discrimi-
nated by each feature.

Figure 2 presents a visualization of the scab and two of 
the top NCA selected features for three patients from dif-
ferent classes to showcase the textures of best predictive 
features in three different classes.

Correlation between NCA selected features was calculated, 
and the results can be seen in Fig. 3. Lower and higher cor-
relations are indicated by smaller/lighter and bigger/darker 
circles, respectively. Highest correlations were between 
GLCM_ClusterTendency and Gabor_Median_W5O135, 
Gabor_Average_W45O45 and GLCM_ClusterTendency, 
FO_Variance_ImgMed and GLCM_ClusterTendency, and also 
Gabor_Kurtosis_W5O67 and FO_Variance_ImgMed.

As shown in Fig. 4, the most discriminating features have 
been used in the feature expression-based cluster gram (hier-
archical clustering). A number of the texture features show 
differential expression between the three classes. Based on 
the values of seven features, hierarchical clustering roughly 
divides values of the same classes close to each other. 
According to the three-color bar on the right, the classes are 
well separated in parts, but this method has not generally 
achieved complete separation.

Using the ConsensusClusterPlus package [33] in R [34], 
consensus clustering [35] was performed to determine 
instinctively how the patients were divided into three clus-
ters (classes) based on seven selected features. Clustering 
three classes into three clusters of consensus resulted in 26% 
of class 1 for cluster 1, 63% of class 2 for cluster 2, and 54% 
of class 3 for cluster 3. To be more precise, it shows that 26% 

Table 2  The number of 
extracted features from different 
feature extractor tools feature 
families, types, and groups. The 
fifth column indicates whether 
features were extracted from 
two-dimensional images (per 
slice) or image volumes. Finally, 
the last column indicates the 
per-pixel or per-image feature 
extraction approach

Origin of code Feature type Feature group Number of 
features

2D/3D Per-pixel/per-image

SERA package Morphology - 29 3D Per-image
Textural GLCM 50 3D

and
2D

GLRLM 32
GLSZM 32
GLDZM 32
NGTDM 10
NGLDM 34

First-order
Intensity-based

- 50 - Per-image

Self-generated Textural GLCM/
Haralick

14 2D Per-pixel

LAWS 25 Per-pixel
Transform-based Gabor 48 Per-image

Table 3  The seven most 
predictive features in three 
feature selection methods. 
Again, bold features were 
shown as similar features in 
different feature selection 
methods

NCA LASSO MRMR

Gabor_Median_W5O135 Gabor_Average_W11O157 Haralick_Kurtosis_DiffAvg
Gabor_Average_W45O45 Gabor_Median_W5O135 LAWS_Kurtosis_W5W5
FO_Variance_ImgMed LAWS_Skewness_R5E5 Gabor_Skewness_W8O45
NGTDM_Complexity Gabor_Average_W45O112 Gabor_Kurtosis_W2O0
FO_Kurtosis_IntHist Gabor_Average_W45O45 Gabor_Kurtosis_W5O22
GLCM_ClusterTendency LAWS_Variance_L5S5 Gabor_Kurtosis_W2O67
Gabor_Kurtosis_W5O67 FO_Kurtosis_ImgMed Gabor_Average_W5O112
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of class 1 patients are in cluster 1 of consensus clustering, 
63% of class 2 patients are in cluster 2, and 54% of class 3 
patients are in cluster 3. A measure of similarity between the 
three classes was determined based on the distance between 
the top seven features. The hierarchical consensus clustering 
(k = 3) for one thousand iterations with Pearson distance was 
performed on 80 percent (each iteration) of the random data 
sets. Figure 5 shows three grouped clusters without inher-
ently considering labels.

Model Analysis

Table 5 represents the performance of all models (combina-
tions of seven classifiers and three feature selection algo-
rithms) using AUC, sensitivity, specificity, precision, and 
F-score parameters while reporting their average for the 
classification of three classes. The classifiers were trained 
with 100 repetitions of 10-fold cross-validation using boot-
strapped subsets, and the average values of the above param-
eters in 100 iterations are listed in Table 5. The best perfor-
mances were achieved from models using NCA features in 
general, and the highest model was a fine KNN classifier 
trained on NCA features, achieving an average accuracy, 
AUC, sensitivity, specificity, precision, and F-score of 0.84, 
0.83, 0.75, 0.87, 0.78, and 0.76, respectively.

Table 6 lists the details (mean ± standard deviation) of the 
results of the top 4 models (all trained on selected features 

by NCA), including accuracy, AUC, sensitivity, specificity, 
precision, and F-score for each class, separately. Bold values 
are displayed for the highest performance for each class. For 

Table 4  The seven best predictive features based on NCA feature selection. The last column shows p values between pairs of three classes based 
on Wilcoxon rank-sum tests. C1C2: pairs of class1 and class2, C1C3: pairs of class1 and class3, C2C3: pairs of class2 and class3

Feature name Feature type Feature group Descriptor Statistical parameter Feature 
importance 
value

p value

Gabor_Median_W5O135 2D Gabor Wavelength = 5.66
Orientation = 135

Median 1 C1C2: 0.10
C1C3: < 0.001
C2C3: 0.20

Gabor_Average_W45O45 2D Gabor Wavelength = 45.25
Orientation = 45

Average 0.949 C1C2: 0.009
C1C3: 0.04
C2C3: 0.30

FO_Variance_ImgMed 2D 3in3 mask First-order
Gray Level

Image median Variance 0.846 C1C2: 0.30
C1C3: 0.07
C2C3: 0.03

NGTDM_Complexity 2D/SERA NGTDM Complexity – 0.814 C1C2: 0.20
C1C3: 0.70
C2C3: 0.80

FO_Kurtosis_IntHist SERA First
Order

Intensity
Histogram

Kurtosis 0.736 C1C2: 0.03
C1C3: 0.40
C2C3: 0.40

GLCM_ClusterTendency 3D/SERA GLCM Cluster
Tendency

– 0.697 C1C2: 0.40
C1C3: 0.30
C2C3: 0.90

Gabor_Kurtosis_W5O67 2D 3in3 mask Gabor Wavelength = 5.66
Orientation = 67.5

Kurtosis 0.655 C1C2: 0.03
C1C3: 0.30
C2C3: 0.004

Fig. 2  Display of two of the features selected by NCA, where each 
column represents a patient from classes 1 to 3. These two features 
include Gabor and NGTDM. It visually depicts the image-based fea-
tures of patients belonging to three classes
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example, fine KNN had the best performance for classifying 
classes one and three, and cosine KNN for classifying the 
second class. The confusion matrix for the four best models, 
namely, fine KNN and cosine KNN, can be found in Fig. 6. 
Values are presented for the average of 100 iterations of clas-
sification and are shown in two decimal order.

Figure 7 presents the p values obtained from the Wilcoxon 
rank-sum test for comparing the performance of classifiers based 
on the NCA feature selection method. The threshold for statistical 
significance was set to 0.05. The upper panel of Fig. 7 compares 
the performances of seven classifiers, indicating that most of 
them exhibit significant differences in their classification perfor-
mance (Table 5). Therefore, the models differ significantly from 
each other, with some outperforming others. The lower panel 
in Fig. 7 displays the p values obtained from comparing the top 
four classifiers based on their evaluation metrics (Table 6). The 
metrics are compared per class and the p-values for each metric 
are displayed separately, indicating the significance of the differ-
ence in classifier performance. This graph also confirms that the 
models have significantly different results from each other, with 
some exhibiting significantly higher performance.

Figure 8 depicts the p values derived from the Wilcoxon 
rank-sum test utilized to evaluate the performance of clas-
sifiers based on three distinct feature selection techniques: 
NCA, MRMR, and LASSO. The statistical significance 
threshold is set at 0.05. The comparative analysis of the per-
formance of the three feature selection methods on seven 
classifiers demonstrates that most of the classifiers exhibited 
significant differences in their classification performance. 
Consequently, based on the evaluation metrics, it can be 
concluded that the models differ significantly depending on 
the feature selection methods employed. Notably, the only 

Fig. 3  NCA selected features’ correlation analysis. Smaller and 
brighter circles illustrate lower correlation values than larger and 
darker ones used for higher correlations. It indicates a low correlation 
for most of the features

Fig. 4  The seven selected 
features and their classes are 
depicted. Each row displays the 
feature normalized values for 
each patient, suggesting that 
values of features from specific 
classes tend to have similar 
values, while values of features 
from different classes tend to 
have roughly distinguishable 
values, highlighting the fact 
that classes are not properly 
classified
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exception to this finding is the RUSBoosted trees classi-
fier, which revealed high p values when comparing the NCA 
and LASSO methods, implying no significant differences 
between the two techniques. However, in all other cases, 
there is a significant difference between the performance of 
the classifiers utilizing different feature selection methods.

Figure 9 shows the ROC curve of cosine KNN, fine KNN, 
subspace KNN, and random forest classifiers. It shows one-time 
training results of all 100 times trained classifiers. The AUC 
results of these four classifiers and other classifiers are depicted 
in Tables 5 and 6. For example, cosine KNN results demonstrated 
0.83 AUC for class 1, 0.92 AUC for class 2, and 0.85 AUC for 
class 3, and fine KNN results show 0.81 AUC for class 1, 0.84 
AUC for class 2 and 0.83 AUC for class 3. Also, subspace KNN 
results were 0.82 AUC for class 1, 0.88 AUC for class 2, and 0.83 
AUC for class 3, and random forest obtained 0.89 AUC for class 
1, 0.90 AUC for class 2, and 0.84 AUC for class 3

Discussion

In this study, we aimed to predict the revascularization 
outcome by post-PCI EF. Although machine learning 
approaches have already been used in MPI-SPECT, it has 

not been used to predict EF improvements after PCI. Previ-
ous studies focused on clinical parameters to evaluate EF 
variations and efficacy factors on MI. Our work was geared 
toward more radiographic parameters where EF improve-
ment is classified based on radiomic features. Physicians 
can benefit from the assessment proposed in this study and 
each patient’s clinical condition to determine whether PCI 
should be performed. Our analysis revealed seven radiomic 
features with considerable significance. After feature selec-
tion, selected features consisted mainly of Gabor, first-
ordered, GLCM, and NGTDM features. The Gabor features 
are the most frequently used, followed by the First-ordered 
feature group, GLCM, and NGTDM. NCA feature selection 
algorithm appeared in all four best models, which shows 
NCA's superior performance. LASSO was more successful 
than MRMR among the other two feature selection methods 
based on classification results.

Two of the Gabor features were common in the two fea-
ture selection methods, and 3 of the top 7 features included 
Gabor filters, indicating this feature family's importance. 
Gabor filters [36] show a specific frequency content in a cer-
tain direction and a localized region, where the frequency in 
the image indicates the intensity variations. The first feature 
is the median of the Gabor image, and the second feature is 

Fig. 5  Based on a combina-
tion of top features, consensus 
clustering is shown. This graph 
shows three grouped clusters 
without labels and clearly shows 
three distinct clusters of features
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the average of the Gabor image. The intensity of the image 
shows myocardial perfusion, and its changes show the differ-
ence in perfusion in different areas of the myocardium. Thus, 
the median and average of the frequency content (Gabor 
image) of the MPI-SPECT show the differences in perfusion 
in specific areas and directions of the myocardium. These 
differences in perfusion can be due to scattered and heter-
ogenous regions of myocardial hibernation, infarction, scar, 
etc., which respond differently to revascularization. Oxygen 

and nutrition supplied by the revascularization may revive 
the hibernated regions on the myocardium leading to an 
increase in EF, which is not the case for severely infarcted 
zones [25]. The third feature contains the median of the 3 × 
3 masks of the image, which moves along the entire image 
and finally presents an image where each pixel is the median 
of the 3 × 3 mask. In the end, the variance of the median 
image was calculated. The median shows the intensity value 
in the middle of the mask's intensity range, and the variance 

Table 5  The average values of 
100 times classifying for testing 
data are shown. Results include 
the mean value of accuracy, 
AUC, sensitivity, specificity, 
precision, and F-score for 
three classes. Feature selection 
methods are shown in the 
first column, including NCA, 
MRMR, and LASSO. The 
best values of each evaluation 
parameter are bolded

Classifiers Accuracy AUC Sensitivity Specificity Precision F-score

NCA Cosine KNN 0.82 0.87 0.72 0.85 0.74 0.72
Fine KNN 0.84 0.83 0.75 0.87 0.78 0.76
Subspace KNN 0.80 0.84 0.69 0.84 0.74 0.69
Cross-entropy decision tree 0.76 0.75 0.61 0.82 0.61 0.60
RUSBoosted trees 0.78 0.76 0.66 0.84 0.66 0.65
Cubic SVM 0.75 0.80 0.62 0.81 0.65 0.60
Random forest 0.79 0.88 0.64 0.83 0.67 0.65

MRMR Cosine KNN 0.60 0.59 0.38 0.69 0.35 0.37
Fine KNN 0.61 0.57 0.40 0.70 0.39 0.39
Subspace KNN 0.61 0.56 0.39 0.68 0.37 0.37
Cross-entropy decision tree 0.64 0.68 0.44 0.72 0.45 0.44
RUSBoosted trees 0.65 0.62 0.48 0.74 0.47 0.46
Cubic SVM 0.63 0.57 0.45 0.72 0.42 0.42
Random forest 0.68 0.71 0.47 0.74 0.48 0.47

LASSO Cosine KNN 0.72 0.81 0.54 0.78 0.55 0.53
Fine KNN 0.75 0.69 0.58 0.80 0.60 0.59
Subspace KNN 0.75 0.74 0.57 0.79 0.61 0.58
Cross-entropy decision tree 0.75 0.76 0.63 0.81 0.63 0.62
RUSBoosted trees 0.77 0.80 0.65 0.83 0.65 0.64
Cubic SVM 0.73 0.74 0.56 0.79 0.57 0.55
Random forest 0.76 0.81 0.59 0.81 0.60 0.58

Table 6  The four best predictive models, all chosen by NCA fea-
ture selection. Accuracy, AUC, sensitivity, specificity, precision, and 
F-score are shown separately for each class. The best classifiers were 

the cosine KNN, fine KNN, subspace KNN, and random forest. The 
best performances for each class are shown in bold

Classifiers Classes Accuracy 
(mean ± SD)

AUC 
(mean ± SD)

Sensitivity 
(mean ± SD)

Specificity 
(mean ± SD)

Precision 
(mean ± SD)

F-score 
(mean ± SD)

NCA Cosine KNN Class 1 0.74 ± 0.033 0.83 ± 0.083 0.76 ± 0.047 0.72 ± 0.041 0.71 ± 0.035 0.73 ± 0.036
Class 2 0.87 ± 0.023 0.92 ± 0.092 0.70 ± 0.067 0.92 ± 0.018 0.72 ± 0.052 0.71 ± 0.053
Class 3 0.84 ± 0.024 0.85 ± 0.085 0.69 ± 0.045 0.91 ± 0.028 0.78 ± 0.055 0.73 ± 0.039

Fine KNN Class 1 0.79 ± 0.029 0.81 ± 0.080 0.82 ± 0.045 0.76 ± 0.039 0.75 ± 0.032 0.78 ± 0.031
Class 2 0.86 ± 0.022 0.84 ± 0.084 0.77 ± 0.051 0.89 ± 0.027 0.68 ± 0.052 0.72 ± 0.038
Class 3 0.87 ± 0.021 0.83 ± 0.083 0.67 ± 0.052 0.97 ± 0.020 0.90 ± 0.054 0.77 ± 0.044

Subspace KNN Class 1 0.72 ± 0.034 0.82 ± 0.081 0.79 ± 0.043 0.66 ± 0.053 0.67 ± 0.036 0.72 ± 0.032
Class 2 0.84 ± 0.022 0.88 ± 0.088 0.70 ± 0.064 0.88 ± 0.020 0.63 ± 0.046 0.66 ± 0.047
Class 3 0.85 ± 0.026 0.83 ± 0.083 0.57 ± 0.073 0.97 ± 0.025 0.91 ± 0.078 0.69 ± 0.060

Random forest Class 1 0.76 ± 0.037 0.89 ± 0.089 0.81 ± 0.051 0.71 ± 0.059 0.71 ± 0.043 0.75 ± 0.035
Class 2 0.82 ± 0.037 0.90 ± 0.090 0.51 ± 0.012 0.91 ± 0.032 0.63 ± 0.010 0.56 ± 0.010
Class 3 0.78 ± 0.039 0.84 ± 0.084 0.60 ± 0.080 0.86 ± 0.046 0.66 ± 0.084 0.63 ± 0.066
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of the median image indicates how much the intensity values 
for each mask vary from the median value across all masks 
used in the analysis. As a result, this feature somehow aligns 
with the hypothesis of the first and second features, which 
hypothesized the perfusion heterogeneity in the myocar-
dium, representative of zones with different infarction levels, 
predicting the improvement of EF after revascularization. 
Similarly, the fourth discriminative feature, NGTDM com-
plexity, supports our hypothesis by showing non-uniform 
and rapid changes in grey levels.

Based on a comparison of seven machine-learning clas-
sifiers in Table 5, fine KNN proved to be the most predic-
tive with accuracy = 0.84, sensitivity = 0.75, specificity = 
0.87, precision = 0.78, and F-score = 0.76. In addition, ran-
dom forest with AUC = 0.88 showed better results accord-
ing to AUC values. Based on unbalanced data between 
classes, specificity, and sensitivity are more appropriate 
evaluation metrics. Regarding sensitivity and specificity, 
fine KNN with sensitivity = 0.75 and specificity = 0.87, 
which are acceptable values, also performed well. Radi-
omic features can be affected by the variability of features 
due to different scanners, acquisition protocols, segmenta-
tions, and processing protocols in MPI-SPECT [37, 38]. In 
this study, a unique gamma camera was used; thus, possible 
variations were offset; however, to get more reproducible 
results, vast and heterogenous datasets from multiple cent-
ers are needed. Participants underwent revascularization 
and MPI-SPECT using a specific gamma camera and a 
prior- and post-PCI echocardiogram as part of the study. 
However, due to the difficult nature of the data acquisition 
for this study, the number of patients was limited. The num-
ber of patients for each class was 24 for class 1, 12 for class 
2, and 16 for class 3. Hence, a slight imbalance existed in 
the distribution of classes in our dataset. Wilcoxon rank-
sum between classes was used in this regard, which indi-
cates that five of the predictive features had a significant 
difference for at least one pair of classes. An analysis of 

the selected radiomic features using correlation was illus-
trated in Fig. 3. Low correlation (independent information) 
is seen in most features. The discriminability of the identi-
fied features was also illustrated using clustering methods.

Prediction of early coronary revascularization (ECR)  
by MPI-SPECT has been studied previously [39–41]. In 
[40], clinical characteristics like hypertension, dyslipi-
demia, smoking, family history, stress testing, and inter-
pretation of MPI-SPECT by nuclear cardiologist experts 
have been used as predictors in machine learning algo-
rithms. Then physician’s assessments were compared 
with machine learning assessments. The ability of ML to 
predict early revascularization in patients with suspected 
CAD was superior to the ability of individual quantitative 
measures, such as stress TPD, combined-view stress TPD, 
and ischaemic TPD, for each vessel and patient. Further-
more, ML was more accurate than the clinical interpreta-
tion by a human expert for each patient. Arsanjani et al. 
[21] examined the effectiveness of integrating clinical data 
with quantitative image features derived from MPI-SPECT 
to predict early revascularization in patients with suspected 
CAD using LogitBoost. In [42], robustness, repeatability, 
and reproducibility of cardiac SPECT radiomic features 
have been investigated as a phantom study. They examined 
the reproducibility of cardiac SPECT radiomic features 
under different imaging settings, which included recon-
structing algorithms, the number of iterations and subsets, 
matrix size, attenuation correction, number of views, and 
post-reconstruction filters. In [25], radiomics were used to 
predict myocardial function improvement after CABG sur-
gery in cardiac MR images, and the SCAD-penalized SVM 
approach obtained an AUC of 0.784. Hajianfar et al. [43] 
used MPI-SPECT with different reconstruction parameters 
to study the impact of ComBat harmonization on radiom-
ics features. According to the Kruskal-Wallis test, 11, 10, 
0, 21, and 1 features before ComBat harmonization had 
significant differences over the reconstruction method, 

Fig. 6  Confusion matrix of the 
four best models depicting the 
mean of 100 times classification 
for each of the values
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filter, order, cutoff, and iteration subset, respectively. After 
ComBat harmonization, all features had no significant dif-
ferences. As a result of applying ComBat harmonization, 
it could provide a solution to this problem, improving the 
reproducibility of radiomics features derived from different 
reconstruction methods.

Consensus clustering was performed to identify the sta-
bility and discrimination power of the predicted classes on 
the data set. Based on a consensus clustering approach, we 
investigated the correlation within and between classes for 
the features that were distinguished during feature selec-
tion (Fig. 5). There was a higher probability of belong-
ing to a cluster when two radiomic features were close to 
each other. The basic idea is to perform clustering on the 
same dataset multiple times with random initialization and 
selection of clustering algorithms to minimize the risk of 

overfitting and instability of the clustering results. Fea-
tures belonging to a cluster should have a high intra-class 
correlation (ICC), whereas features belonging to differ-
ent clusters should have a lower correlation. As shown in 
Fig. 5, during 1000 iterations, the more pairs of patients are 
placed together, the bluer the color becomes, and the fewer 
pairs of patients are placed, the whiter the color becomes, 
and finally, the shading takes place between the two. In 
other words, it shows how often a pair of patients were 
paired up. A confusion matrix for four of the best models 
is shown in Fig. 6, with the table values representing the 
average of 100 classifications. Cosine KNN correctly pre-
dicted 18.3 of 24 patients in class 1, while fine KNN, sub-
space KNN, and random forest correctly diagnosed 19.6, 
19.0, and 19.4, respectively. Also, in class 2, out of 12 
patients, 8.4, 9.2, 8.4, and 6.1 were correctly diagnosed in 
cosine KNN, fine KNN, subspace KNN, and random for-
est, respectively, and in class 3, among 16 patients, 10.9, 
10.7, 9.0, and 9.6 were correctly diagnosed in cosine KNN, 
fine KNN, subspace KNN, and random forest, respectively. 
It has been found that the models have demonstrated fair 
values for the classification of three classes. A limitation 
of the study is the relatively small number of patients due 

Fig. 7  Comparison of the performance of seven classifiers based on 
the NCA feature selection method using the Wilcoxon rank-sum test. 
The top panel illustrates the p-values obtained from comparing the 
evaluation metrics of seven classifiers, including accuracy, AUC, sen-
sitivity, specificity, precision, and F-score. The lower panel displays 
the p values obtained from comparing the top four classifiers based 
on their evaluation metrics, compared on a per-class basis

◂

Fig. 8  p Values obtained from the Wilcoxon rank-sum test comparing the performance of three feature selection methods, namely NCA, MRMR, 
and LASSO in seven different classifiers with evaluation metrics including accuracy, AUC, sensitivity, specificity, precision, and F-score
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to the difficult follow-up nature of the study. The study 
also had the limitation of collecting data from a single site, 
which may undermine the study’s robustness. An investiga-
tion of the relationship between features and EF improve-
ment following revascularization could be conducted with 
a larger dataset. In addition, repeatability (specific scanner/
protocol) and reproducibility (different scanner/protocol) 
of radiomics and machine learning for post-revasculariza-
tion EF improvement in the same patients have not been 
evaluated and can be investigated in future studies. Also, 
an analysis could be attained using the 17-segment model 
of the revascularized artery reported on a PCI report. 

Moreover, further work could be conducted using deep 
learning methods with a larger sample size.

Conclusion

In this study, we employed a combination of 2D and 3D radiom-
ics approaches for EF improvement prediction after revasculari-
zation with respect to three classes of classification. It was shown 
that radiomic features are related to post-revascularization EF 
improvement, and it can predict EF improvement with insignifi-
cant error with convenient accuracy. Potentially, these findings 

Fig. 9  ROC of cosine KNN, fine KNN, subspace KNN, and ran-
dom forest classifiers for three classes. The AUC of the classifiers 
is greater than 0.5 for all three classes. In cosine KNN, the optimal 
point for class 1, class 2, and class 3, respectively, was 0.73, 0.83, and 
0.58. Fine KNN’s optimal point was 0.78 for class 1, 0.82 for class 

2, and 0.69 for class 3. In subspace KNN, the optimal point was 0.78 
for class 1, 0.75 for class 2, and 0.81 for class 3. In random forest, the 
optimal point was 0.82 for class 1, 0.83 for class 2, and 0.50 for class 
3. The x-axis represents the False Positive Rate (FPR) (1-specificity) 
and the y-axis represents the True Positive Rate (TPR) (sensitivity)
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can have a significant clinical impact on decision-making. For 
example, it can help physicians assess the cost and benefits of PCI 
procedures in patients with particular risk factors. Furthermore, 
it can help by reducing the risk of infection and complications, 
reducing the cost and duration of hospitalization [41–43].
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