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Abstract
A U-shaped contraction pattern was shown to be associated with a better Cardiac resynchronization therapy (CRT) response. 
The main goal of this study is to automatically recognize left ventricular contractile patterns using machine learning algo-
rithms trained on conventional quantitative features (ConQuaFea) and radiomic features extracted from Gated single-photon 
emission computed tomography myocardial perfusion imaging (GSPECT MPI). Among 98 patients with standard resting 
GSPECT MPI included in this study, 29 received CRT therapy and 69 did not (also had CRT inclusion criteria but did not 
receive treatment yet at the time of data collection, or refused treatment). A total of 69 non-CRT patients were employed 
for training, and the 29 were employed for testing. The models were built utilizing features from three distinct feature sets 
(ConQuaFea, radiomics, and ConQuaFea + radiomics (combined)), which were chosen using Recursive feature elimination 
(RFE) feature selection (FS), and then trained using seven different machine learning (ML) classifiers. In addition, CRT 
outcome prediction was assessed by different treatment inclusion criteria as the study’s final phase. The MLP classifier 
had the highest performance among ConQuaFea models (AUC, SEN, SPE = 0.80, 0.85, 0.76). RF achieved the best perfor-
mance in terms of AUC, SEN, and SPE with values of 0.65, 0.62, and 0.68, respectively, among radiomic models. GB and 
RF approaches achieved the best AUC, SEN, and SPE values of 0.78, 0.92, and 0.63 and 0.74, 0.93, and 0.56, respectively, 
among the combined models. A promising outcome was obtained when using radiomic and ConQuaFea from GSPECT MPI 
to detect left ventricular contractile patterns by machine learning.
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Abbreviations
ConQuaFea  Conventional quantitative features
HF  Heart failure
CRT   Cardiac resynchronization therapy
NYHA  New York Heart Association
LVEF  Left ventricular ejection fraction
LV  Left ventricle
CAD  Coronary artery disease
GSPECT MPI  Gated single-photon emission com-

puted tomography myocardial perfusion 
imaging

NCM  Non-contact mapping
CMR  Cardiac magnetic resonance
MRI  Magnetic resonance imaging
CT  Computed tomography
PET  Positron emission tomography
QGS  Quantitative gated SPECT
IBSI  Image Biomarker Standardization 

Initiative
VOI  Volume of interest
SD  Standard deviation
RFE  Recursive feature elimination
LR  Logistic regression
DT  Decision tree
RF  Random forest
XGB  Extreme gradient boosting
MLP  Multi-layer perceptron
SVM  Support vector machine
GB  Gradient boosting
AUC   Area under the ROC curve
ACC   Accuracy
SEN  Sensitivity
SPE  Specificity
FDR  False discoveries rate

Introduction

Heart failure (HF) is a relatively common cardiovascular 
disorder with prominent morbidity and mortality [1]. HF is 
closely related to left ventricular (LV) cardiac mechanical 
dyssynchrony, which reflects timing differences across vari-
ous left ventricle regions [2]. Nonhomogeneous contraction 
patterns can be caused by the uncoordinated distribution of 
electrical activation in the heart pathways, known as car-
diac dyssynchrony [3–5]. Thus, therapeutic measures are 
developed to resynchronize the left ventricular contraction 
in HF patients.

Cardiac resynchronization therapy (CRT) demonstrated 
significant success in treating patients with fatal HF [6, 7]. 
Patients undergoing CRT have substantiated the claims of 
most previous studies regarding the enhancements in sev-
eral parameters, such as 6-min walking distance, New York 

Heart Association (NYHA) functional class, quality of life 
score, and peak  O2 [6]. Nonetheless, estimations demon-
strated that approximately one-third of chosen cases do not 
respond to this costly and invasive therapy [8–12] in spite 
of meeting current inclusion criteria for CRT therapy by the 
guidelines, which includes NYHA III or IV, left ventricular 
ejection fraction (LVEF) < 35%, and QRS duration ≥ 130 ms 
[13]. Consequently, the search for more specific criteria is 
still under investigation.

In line with finding new and more appropriate indicators 
for CRT patient selection, several studies have been con-
ducted. In a study by Bax et al. [14], LV dyssynchrony was 
introduced as a desirable indicator. Furthermore, in another 
study conducted by Chen et al. [15], histogram bandwidth 
and phase standard deviation parameters extracted from 
phase analysis were suggested as important indicators. 
In addition, in examining the locations of CRT leads by 
Adelstein et al. [9], it was found that the best locations 
are far away from the scar tissue [9]. New LV mechanical 
dyssynchrony parameters were extracted from GSPECT 
MPI phase analysis with deep learning to aid CRT patient 
selection by He et al. [16].

Two types of left ventricular contraction patterns includ-
ing U-shaped and non-U-shaped patterns have been recently 
proposed by different imaging modalities [17]. A U-shaped 
pattern is formed by a left ventricle–directed linear blockage 
which impedes contraction propagation [18, 19]. Conversely, 
a non-U-shaped pattern consists of two types, namely, 
“homogenous contraction” with apparent delay on all walls 
and “heterogeneous contraction” with multiple contraction 
delays in different sites [19]. An improved CRT response is 
discerned to be in association with a U-shaped contraction 
pattern [17–22].

Myocardial perfusion imaging (MPI) with gated single-
photon emission computed tomography (GSPECT) is a 
practical technique to assess perfusion and function of left 
ventricle (LV). Evaluation of LV dyssynchrony and LV con-
traction patterns can also be ascertained by applying phase 
analysis to GSPECT MPI. The advantage of simultaneous 
assessment of perfusion abnormalities, such as the extent 
and severity of ischemia and scar, and functional param-
eters including LV dyssynchrony, LVEF, and LV volumes 
make this modality an eligible method for evaluation and 
diagnosis of patients with HF and LV dysfunction. Besides, 
the automated nature of phase analysis results in an accept-
able repeatability and reproducibility of this technique. As 
a result, MPI GSPECT is a relevant modality for examining 
the left ventricular contractile pattern [19, 23].

Recent studies concerning quantitative radiomics anal-
ysis, through acting as biomarkers, have provided new 
insights into better handling of diseases, such as cancer [24] 
and coronary artery disease (CAD) to predict survival [25, 
26], prognosis [27, 28], and therapeutic response [29, 30], 
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different pathology classification [28, 31–33], and accumu-
lating data for personalized medicine [34]. In fact, radiomics 
is an almost new science that has attracted many researchers’ 
attention and is therefore growing rapidly. However, it is not 
yet fully prepared to enter the clinical phase. In fact, radi-
omics analysis has been performed on magnetic resonance 
imaging (MRI), computed tomography (CT), and positron 
emission tomography (PET) images, but less on SPECT 
owing to its low spatial resolution and low sensitivity. It 
should be noted that in recent studies, radiomics has per-
formed well in brain SPECT images as well as heart SPECT 
images [35–37]. Radiomic features are used to feed machine 
learning algorithms. Machine learning techniques, through 
the usage of computer algorithms and advanced statistical 
techniques, facilitate automatic extraction of prognostic 
knowledge or discriminatory patterns from data, often with 
the aim of making prediction on new data [38–40].

In this work, the purpose of automatic detection of left 
ventricular contractile patterns is fulfilled by radiomic 
and conventional quantitative features (ConQuaFea) using 
machine learning algorithms and MPI GSPECT images. 
This study aims to help clinicians to more confidently select 
patients who are eligible for CRT treatment and will also 
save them time and energy. In the last step, a comparison 
was made with the evaluation of response to CRT treatment 
using the left ventricular contraction pattern diagnosed by 
two experienced nuclear medicine physicians and the mod-
els presented in this study and standard criteria for prescrib-
ing CRT.

Materials and Methods

Figure 1 represents the graphical pipeline of the study. The 
whole workflow of the study, from data acquisition to evalu-
ation of the proposed models, is elaborated in the following 
sub-sections as shown in Fig. 1.

Dataset and Image Acquisition

This is a retrospective study including 98 patients encom-
passing 29 patients who underwent CRT treatment and 
69 patients who did not (not being treated yet at the time 
of data collection or refused treatment) but had the same 
inclusion criteria: (a) EF ≤ 35% based on echocardiog-
raphy and (b) QRS duration ≥ 130 ms [13]. Eighty-three 
men and 15 women (mean age = 59.37) were selected as 
participants. Out of 98 patients, 48 had U-shaped and 50 
had non-U-shaped contractile patterns (visually assessed 
by two experienced nuclear medicine physicians from the 
polar maps as described in detail in the following sec-
tion). Overall, among the patients who underwent CRT, 
13 had U-shaped and 16 had non-U-shaped patterns, and 
among those patients who did not undergo CRT, 35 had 
U-shaped and 34 had non-U-shaped patterns. All patients 
underwent MPI GSPECT with the same vendor and same 
acquisition parameters. Each patient registered, underwent 
conventional resting MPI GSPECT. At rest condition, 
555–740 MBq of Tc-99 m sestamibi was intravenously 
administered, and the GSPECT scan started 45–90 min 

Fig. 1  Flowchart describing the main steps involved in the presented study
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post-injection. The images were acquired on a dual-headed 
gamma camera (Symbia™ T2, Siemens Healthcare) with 
body auto-contour form 135° (RAO) to − 45° (LAO) in 
180° orbit, 32 thirty-second steps and 16-bin gating, 
using a matrix size of 64 × 64 with an isotropic voxel size 
(6.591 × 6.591 × 6.591  mm3) in the reconstructed images. 
The photopeak was adjusted to 140 keV with 20% energy 
window. Image reconstruction was accomplished using fil-
tered backprojection technique with a post-reconstruction 

Butterworth filter (order = 5, cut-off frequency of 0.45 
cycles/mm).

Conventional Quantitative Features (ConQuaFea)

Phase analysis was also performed using quantitative gated 
SPECT (QGS) software (Table 1) to extract several quantita-
tive image-based features. These are summarized in Table 1, 
“Features extracted from Quantitative Gated SPECT (QGS)” 

Table 1  First part of ConQuaFea including phase analysis and QGS features, separately for cohorts of patients with U-shaped and non-U-shaped 
contractile patterns. IQR interquartile range

ConQuaFea first part Non-u-shaped (n = 50)
Mean and IQR

U-shaped (n = 48)
Mean and IQR

P value

Age (years) 59.52 and 13.00 59.23 and 13.25 0.070
Ejection fraction (Echo) 

(%)
29.16 and 10.00 30.10 and 10.25 0.269

Phase analysis indices Apex Bandwidth (ms) 125.20 and 114.00 128.63 and 114.00 0.754
Mean 356.32 and 88.00 340.50 and 86.25 0.478
Standard deviation 35.70 and 35.00 37.96 and 35.00 0.947
Entropy (%) 39.11 and 33.90 39.51 and 34.03 0.535

Lateral Bandwidth (ms) 123.70 and 104.00 164.73 and 112.50 0.018
Mean 340.46 and 78.00 368.58 and 78.50 0.755
Standard deviation 35.30 and 27.00 46.96 and 30.25 0.032
Entropy (%) 45.87 and 18.80 48.06 and 19.43 0.134

Inferior Bandwidth (ms) 121.88 and 93.00 143.92 and 92.25 0.523
Mean 341.10 and 59.00 363.38 and 56.75 0.047
Standard deviation 34.24 and 27.00 41.46 and 27.50 0.395
Entropy (%) 46.97 and 17.40 49.02 and 17.15 0.723

Septal Bandwidth (ms) 134.96 and 118.00 147.71 and 116.00 0.476
Mean 344.86 and 78.00 350.96 and 78.75 0.138
Standard deviation 38.84 and 35.00 40.33 and 34.25 0.981
Entropy (%) 47.40 and 19.60 45.60 and 19.70 0.941

Anterior Bandwidth (ms) 131.54 and 116.00 159.21 and 114.75 0.301
Mean 333.36 and 57.00 350.90 and 57.00 0.288
Standard deviation 36.40 and 35.00 43.60 and 34.50 0.312
Entropy (%) 46.59 and 20.80 50.07 and 20.35 0.864

Features extracted from 
quantitative gated SPECT 
(QGS)

Lung heart ratio 0.36 and 0.11 0.40 and 0.11 0.155
Summed motion score 27.00 and 20.00 25.90 and 19.25 0.000
Summed thickening score 18.26 and 16.00 18.10 and 14.50 0.004
Summed motion (%) 31.74 and 23.00 30.46 and 22.25 0.000
Summed thickening (%) 35.72 and 31.00 35.46 and 29.50 0.004
End-diastolic volume (QGS) (ml) 180.20 and 80.00 153.27 and 80.75 0.076
End systolic volume (QGS) (ml) 123.68 and 68.00 98.94 and 67.50 0.032
Systolic volume (ml) 56.80 and 26.00 54.29 and 26.00 0.732
Ejection fraction (%) 37.02 and 17.00 37.81 and 17.00 0.030
Peak emptying rate (EDV/s)  − 2.07 and 1.04  − 1.99 and 0.99 0.181
Peak filling rate (EDV/s) 1.44 and 0.85 1.72 and 0.85 0.594
Peak filling rate2 (EDV/s) 1.39 and 0.97 1.00 and 0.98 0.243
Mean filling rate/3 (EDV/s) 0.74 and 0.60 0.84 and 0.55 0.866
Time to peak filling from ES (ms) 138.25 and 80.00 159.56 and 79.50 0.914
Beats per minute (beats/minute) 773.20 and 224.00 856.54 and 235.50 0.788
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section. Furthermore, other categorical image-based fea-
tures, such as perfusion, phase, and wall motion, were also 
collected from polar maps (Table 2). In addition, explana-
tions related to the phase analysis and QGS features are pro-
vided in Supplementary Table A.1. The results report the 
mean and interquartile range (IQR). The p values were cal-
culated for continuous features using t-test and for categori-
cal features using chi-square. Moreover, the way of scoring 
different regions of the heart is available in Table 3 accord-
ing to [41]. Quantitative image-based and phase analysis 
data were combined and are reported as conventional quanti-
tative features (ConQuaFea) set in the rest of the manuscript.

Investigation of Myocardial Contractile Patterns 
from Polar Maps

The myocardial uptake is divided into a limited number 
of raw perfusion samples after the left ventricle has been 
segmented, each represented by the mean or maximal wall 
photon counts at a specific place on the myocardial surface 
[42]. The objective is to parametrically represent myocar-
dial perfusion to enable standard inter-subject comparability. 
A visual representation known as a “polar map” or “bull’s 
eye map” was created to make it easier to analyze the data 
obtained by polar sampling [43]. In clinical practice, polar 
maps are often employed because they provide a fast vis-
ual overview of myocardial perfusion data for the whole 
LV. Additionally, polar maps enable the myocardium to be 
divided into sections defined by vascular regions, LV wall, 
normalized 21-segment, 17-segment, or 5-segment status, 
which are useful for localizing the abnormalities [44, 45].

Mechanical left ventricular dyssynchrony can produce 
different patterns in polar map images as a result of two 

types of electrical activity propagation in the left ventricu-
lar myocardium, which include a U-shaped pattern and a 
non-U-shaped pattern. U-shaped pattern means that elec-
trical activity propagation is blocked in a line while the 
other walls are almost contracted. For example, a contrac-
tion of an area starts from the anteroseptal wall and then 
goes to the apex, the lateral wall, and finally to the anterior 
wall. However, there are two types of non-U-shaped pat-
tern. The first type is a homogeneous pattern; for example, 
contraction goes from the septal wall to the lateral wall. 
The second type is the heterogeneous pattern, in which 
there are multiple areas for myocardial contraction [19]. 
Different contraction patterns of the left ventricle can be 
seen in Fig. 2. In this study, the contraction pattern was 
assessed visually by two nuclear medicine physicians from 
the 17-segment mode polar maps polar maps.

Table 2  Second part of 
ConQuaFea including wall 
motion, phase, and perfusion 
features, separately for cohorts 
of patients with U-shaped 
and non-U-shaped contractile 
patterns

ConQuaFea second part Non-u-shaped U-shaped P value

Wall motion Septal # in classes (0, 1, 2, 3, 4, 5) 2, 3, 8, 7, 10, 20 7, 4, 9, 5, 14, 9 0.150
Anterior 16, 7, 11, 5, 10, 1 17, 6, 11, 10, 3, 1 0.357
Lateral 19, 8, 9, 10, 3, 1 22, 7, 10, 6, 3, 0 0.806
Inferior 10, 8, 8, 9, 13, 2 14, 4, 9, 7, 13, 1 0.761
Apex 11, 6, 6, 7, 11, 9 10, 3, 7, 2, 18, 8 0.346

Phase Septal # in classes (1, 2, 3, 4, 5) 9, 11, 8, 9, 13 10, 7, 11, 8, 12 0.831
Anterior 12, 13, 10, 12, 3 11, 14, 11, 9, 3 0.972
Lateral 6, 12, 12, 8, 12 11, 10, 5, 9, 13 0.331
Inferior 9, 4, 14, 16, 7 5, 9, 8, 16, 10 0.268
Apex 17, 9, 6, 4, 14 10, 11, 14, 4, 9 0.180

Perfusion Septal # in classes (0, 1, 2, 3, 4) 28, 10, 4, 6, 2 31, 6, 4, 4, 3 0.788
Anterior 33, 3, 9, 3, 2 33, 6, 3, 3, 3 0.385
Lateral 38, 6, 2, 3, 1 38, 5, 4, 1, 0 0.606
Inferior 26, 8, 8, 6, 2 29, 11, 5, 3, 0 0.368
Apex 20, 7, 5, 8, 10 26, 4, 3, 5, 10 0.600

Table 3  Scoring heart segments in terms of wall motion, perfusion, 
and phase

Categorical features Scores

Wall motion 0 = normal
1 = mild hypokinesia
2 = moderate hypokinesia
3 = severe hypokinesia
4 = akinesia
5 = dyskinesia

Perfusion 0 = normal
1 = mild hypoperfusion
2 = moderate hypoperfusion
3 = severe hypoperfusion
4 = absent perfusion

Phase 1 = fastest contraction
5 = slowest contraction
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Radiomics Feature Extraction

To extract MPI SPECT radiomic features, the left ventricle 
was segmented by an experienced nuclear medicine tech-
nologist and edited/verified by a nuclear medicine physician. 
Then, feature extraction was conducted utilizing pyradiom-
ics, a library in python compliant with image biomarker 
standardization initiative (IBSI) [40, 46]. Re-sampling was 
performed for all images with order 3 interpolation using 
sitkBSpline to 6.591 × 6.591 × 6.591  mm3 voxels. Intensi-
ties within the volume of interest (VOI) were separated to 
32 discrete gray levels with fixed bin number technique. A 
total of 107 radiomic features including shape, intensity, and 
second-/high-order texture features from GLDM, GLCM, 
GLRLM, GLSZM, and NGTDM families were extracted. 
The name and short description of all radiomic features are 
presented in Supplementary Table A.2.

Machine Learning Workflow

As can be seen in Fig. 1, after the feature extraction process, 
the data was split into train/test partitions in a way that 
69 non-CRT patients were used for training and 29 CRT 
patients were used for testing. In addition, three feature 

sets were pursued for modeling. In the first case, only Con-
QuaFea was used for modeling. In the second case, only 
radiomic features and finally, in the third case, a combi-
nation of these two feature sets (combined) were used for 
modeling. In all models, the features extracted from the 
training dataset were normalized using Z-score method, 
and the calculated mean and standard deviation (SD) were 
applied on corresponding features extracted from the test 
dataset.

The feature selection method used in this study was recur-
sive feature elimination (RFE). Modeling was performed 
using logistic regression (LR), decision tree (DT), random for-
est (RF), extreme gradient boosting (XGB), multi-layer per-
ceptron (MLP), support vector machine (SVM), and gradient 
boosting (GB) algorithms. As a result, a total of 21 different 
models (3 kinds of feature-sets including ConQuaFea, radiom-
ics, and combined × 1 feature selection method × 7 machine 
learning methods) were implemented. Hyper-parameters were 
optimized using GridSearch with 5-fold cross-validation in 
training data, and best values were selected to train model 
followed by applying the trained model on test data by 1000 
bootstrap. The best hyper-parameters for each classifier are 
presented in Table A.3. Area under the ROC curve (AUC), 
accuracy (ACC), sensitivity (SEN), and specificity (SPE) 

Fig. 2  Illustration of different 
contraction patterns of the left 
ventricle showing U-shaped 
(upper right), non-U-shaped 
(upper left) (homogeneous), and 
non-U-shaped (heterogeneous) 
(bottom)

502 Journal of Digital Imaging (2023) 36:497–509



1 3

metrics were used to evaluate the models. All analysis was 
performed on Python 3.8.8.

Delong Test

Using Delong test, comparisons between AUC of all models 
were performed, which was in turn followed by false dis-
coveries rate (FDR) correction with Benjamini–Hochberg 
method applied on p values. Consequently, adjusted p values, 
also known as q values, were assessed. P values less than 
0.05 were considered statistically meaningful.

Evaluation of CRT Response

In the final step of the study, the task of differentiating 
between patients responding to CRT or not was assessed 
by different inclusion criteria for the treatment, namely, (1) 
conventional criteria and (2) left ventricle contractile pattern 
status assessed visually by two nuclear medicine physicians 
or alternatively by machine learning and ConQuaFea/radi-
omic features. These patients considered as responders to 
CRT, experienced an improvement of at least 5% in LVEF 
during six months of follow-up [13].

Results

Selected Features

Based on RFE feature selection, 9 ConQuaFea, 18 com-
bined, and 12 radiomic features were selected. Figure 3 
illustrates the distribution of selected radiomic features 
over different feature families in the form of a pie chart. 
As it is shown in Fig. 3, GLCM and GLSZM features 
were selected the most, following them were GLDM and 
NGTDM which had the highest selection. This is while, 

first order in radiomic features and GLRLM in com-
bined features were not selected by the feature selection 
methods.

Figure 4 illustrates the selection process and lists the 
selected features by RFE feature selection for radiomics, 
ConQuaFea, and combined models.

Models’ Performance

The models were developed using features from three dif-
ferent feature sets (ConQuaFea, radiomics, and combined), 
selected by RFE feature selection method, and trained with 
seven different machine learning methods (LR, DT, RF, 
XGB, MLP, SVM, and GB). Figure 5 illustrates perfor-
mance metrics of all models. The performance metrics 
reported in Fig. 5 include AUC, accuracy, sensitivity, and 
specificity.

The best performance among ConQuaFea models was 
achieved by MLP classifier (ACC, AUC, SEN, SPE = 0.80, 
0.80, 0.85, 0.76, respectively). Among radiomics models the 
best models was RF model (ACC, AUC, SEN, SPE = 0.66, 
0.65, 0.62, 0.68, respectively). Among the combined mod-
els, the best ones were GB and RF machines (ACC, AUC, 
SEN, SPE were 0.76, 0.78, 0.92, 0.63, and 0.72, 0.74, 0.93, 
0.56, respectively).

The results of the Delong test are illustrated in Fig. 6. The 
AUC of each model was compared with 20 other models. 
The results were classified as statistically significant (sig-
nificantly lower or significantly higher) and non-significant. 
In Fig. 6, the MLP classifier on ConQuaFea had the best 
results with 11 significantly higher q values. Regarding radi-
omic features, the RF classifier did not have any significant 
q values. In terms of models with combined feature sets, 
GB and RF classifiers had 11 and 3 significantly higher q 
values, respectively.

Fig. 3  Distribution of selected radiomic features by RFE feature 
selection method across different feature families. The left chart is 
related to the time when the features were selected from the radiomic 

data set, whereas the right chart is related to the time when the radi-
omic features were selected from combined features
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CRT Response Prediction

The primary aim of this study was to predict contractile 
patterns using GSPECT MPI, but the performance of the 
different models regarding the prediction of CRT response 

for 29 patients undergoing the treatment were also evalu-
ated. Table  4 illustrates outcomes of 29 patients who 
underwent CRT with the confusion matrix regarding the 
prediction of models based on conventional criteria and 
myocardium contractile pattern (identified by two nuclear 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

1
0

3

1
0

6

1
0

9

1
1

2

1
1

5

1
1

8

1
2

1

1
2

4

1
2

7

1
3

0

1
3

3

1
3

6

1
3

9

1
4

2

1
4

5

1
4

8

1
5

1

1
5

4

1
5

7

1
6

0

RFE Feature Selection

ConQuaFea Radiomics Combined Selected Point

ConQuaFea APX_Mean, APX_stDev, INF_stDev, ANT_Mean, LHR, SV, TTPF, EF_Echo, Gender

Radiomics Shape_Sphericity, GLDM_GLV, GLDM_GLNU, GLCM_JEnergy, GLCM_IV, GLCM_CP, GLRLM_GLV, 
GLSZM_SZNUN, GLSZM_SZNU, GLSZM_SAHGLE, NGTDM_Coarseness, NGTDM_Strength

Combined
Shape_Sphericity, GLDM_GLNU, GLCM_CS, GLCM_IMC1, FO_Skewness, GLSZM_SZNUN, GLSZM_SZNU, 
NGTDM_Strength, APX_Mean, APX_Entropy_Percent, LAT_Bandwidth, ANT_Mean, LHR, STS, SM_Percent, SV, 
BPM, INF_Per

ycar
ucc

A

Variables

Fig. 4  The process of RFE feature selection and the resultant features. 
The green circles show the selected points (APX_Mean, apex mean; 
APX_stDev, apex standard deviation; INF_stDev, inferior stand-
ard deviation; ANT_Mean, anterior mean; LHR, lung heart ratio; 
SV, systolic volume; TTPF, time to peak filling from ES; EF_Echo, 

ejection fraction (Echo); APX_Entropy_Percent, apex entropy (%); 
LAT_Bandwidth, lateral bandwidth; STS, summed thickening score; 
SM_Percent, summed motion (%); BPM, beats per minute; INF_Per, 
inferior perfusion)

Fig. 5  Performance metrics 
of ConQuaFea, radiomic, and 
combined features. The metrics 
include the area under the curve 
(AUC), accuracy (ACC), sen-
sitivity (SEN), and specificity 
(SPE). Seven different classi-
fiers with a feature selection 
method and 3 different feature 
sets are considered
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medicine physicians and different proposed machines) for 
prescription of the treatment. Table 4 is color coded as blue 
for correct decisions (true positive and negative) and red 

for wrong decisions (false positive and negative). The first 
row of Table 4 shows that based on the conventional crite-
ria, from 29 patients prescribed with CRT, only 16 patients 

Fig. 6  Comparison of model’s performance through the Delong test 
being applied on the AUCs of models. We compare the pairwise 
model in this figure where the row models were tested against column 
models. Light blue, if the row model had significantly higher p value 

than the column model; purple, if the row model had significantly 
lower p value compared to the column model; red, if the compari-
son between the row model and column model had non-significant p 
value

Table 4  Prediction of models based on conventional criteria and myocardium contractile pattern (identified by two nuclear medicine physicians 
and different proposed machines) for the prescription of treatment

CRT selection Criteria Contractile Pattern 
Status Responders Non-

responders
Success 

Rate
Conventional Criteria _ 16 13 55%

Contractile Pattern identified
by human (ground truth)

U-shaped 11 2
76%

Non-U-shaped 5 11

Contractile Pattern identified 
by Combined_RFE_SVM

U-shaped 11 5
66%

Non-U-shaped 5 8

Contractile Pattern identified 
by Combined_RFE_MLP

U-shaped 8 4
59%

Non-U-shaped 8 9

Contractile Pattern identified 
Radiomics_RFE_MLP

U-shaped 7 3
59%

Non-U-shaped 9 10

Contractile Pattern identified 
by ConQuaFea_RFE_MLP

U-shaped 8 5
55%

Non-U-shaped 8 8
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(55%) responded positively after the treatment whereas 13 
other patients (45%) failed in treatment. The second row 
shows the scenario in which the treatment criteria was set 
as the contractile pattern statue (identified by humans). In 
this case, 13 patients were identified with U-shaped pattern, 
supposed to be sent for treatment, and if so, only 2 of them 
would have failed. In addition, from the 16 patients which 
were identified as non-U-shaped, they were not supposed 
to be sent for treatment, 5 of them would have responded 
positively to the treatment. The following rows (identified 
by machine) can be seen in Table 4.

Discussion

Echocardiography, non-contact mapping (NCM), cardiac 
magnetic resonance (CMR), and myocardial perfusion imag-
ing (MPI) are discovering two types of contraction patterns 
in the left ventricle. NCM is considered the gold standard 
of assessing the patterns of LV electrical activation. Yet the 
hazardous and invasive nature of the procedure restricts its 
wide clinical application [18]. Accessibility, noninvasive-
ness and low cost are the advantages leading to wide usage 
of echocardiography. However, low repeatability of echo-
based parameters, the state of being operator-dependent and 
suboptimal acoustic window for 20% of the patients have 
led to the approach being unpromising in selecting patients 
for CRT [52, 53].  CMR has emerged as a valuable tool to 
assess LV contraction patterns due to its high resolution and 
excellent tissue characterization which make it a promising 
approach for selecting responsive patients to CRT. Never-
theless, a high percentage of patients are disqualified on 
account of having pacemakers and implantable cardioverter 
defibrillators (ICDs) or as a result of being claustrophobic. 
In addition, the procedure is expensive, difficult to access, 
and extensively time-consuming [52–54]. GSPECT MPI 
transpires to be a practical technique to ascertain LV con-
traction patterns. Furthermore, GSPECT MPI is consider-
ably being used for HF patients to identify LV dyssynchrony, 
LVEF, LV volumes, ischemia, viability, and scar tissue. 
Moreover, the advantages include the state of being ubiqui-
tous and automated [19, 23, 49].

To the best of our knowledge, our study represents the 
first attempt to label left ventricular contractile patterns by 
ConQuaFea and radiomic features using machine learning 
and GSPECT MPI images. While this task has been previ-
ously studied in GSPECT MPI [19], it has not been investi-
gated by machine learning approaches as well as radiomic 
features. In this study, we applied multiple machine learning 
and a feature selection method on feature sets, including 
radiomics, ConQuaFea/phase-analysis, and combination of 
both features to develop machines for the identification of 
LV contractile pattern from the MPI GSPECT images.

Toward the identification of most relative radiomic fea-
tures, Fig. 3 illustrates the distribution of radiomic features 
selected by RFE feature selection algorithm over radiomic 
feature families. As it can be seen, GLCM and GLSZM 
features followed by GLDM and NGTDM were the most 
selected features, respectively, showing the highest correla-
tion of the texture, hence the heterogeneity of the underly-
ing biology of the myocardial tissue with the outcome of 
interest. First-order radiomic features and GLRLM in com-
bined features were not selected by RFE. In addition, in both 
cases, only one feature in shape family was selected. Since 
the region of interest was set as the whole left ventricle, it 
was expected that morphological features do not show much 
correlation with the desired outcome.

Toward the identification of the optimum automated 
model, different combinations of RFE feature selection and 
machine learning algorithms were applied on the included 
feature sets (ConQuaFea, radiomics, and combined). Con-
QuaFea feature sets showed superiority over radiomic fea-
tures. Nevertheless, radiomic features also showed an ade-
quate performance. However, it was suggested that further 
studies should investigate the correlations between different 
feature sets in an independent analysis.

In summary, our study highlighted the potential of MPI 
SPECT ConQuaFea. Radiomic features for the identification 
of left ventricular contractile patterns also showed an accept-
able performance. Physicians may benefit from evaluating 
each patient’s specific condition and determine if CRT is 
needed. Moreover, it can reduce the workload and time spent 
by physicians, since the detection of U-shaped contractile 
patterns takes an average of 5 min per patient. In addition, 
excessive workloads, long working hours, sleep depriva-
tion, expertise of the physician, and other factors can lead 
to misdiagnosis. Hence, this study attempts to help physi-
cians making better and more precise decisions in short time.

As mentioned earlier, despite the effectiveness and 
importance of CRT [6, 7], at least 30% of patients selected 
for this treatment do not respond well to this costly and 
invasive treatment [8–12], showing insufficiency of current 
inclusion criteria for this treatment. Moreover, from the 29 
patients treated with CRT, 13 patients (45%) did not respond 
to the treatment (Table 4). A number of studies attempted 
to introduce new criteria to improve the response rate to 
treatment. In Bax et al. [14, 47], the presence of left ven-
tricular mechanical dyssynchrony was more common in 
patients responding to CRT treatment, and therefore, it was 
suggested as a criterion to improve response to CRT treat-
ment. A study by Adelstein et al. [9] also suggested that CRT 
leads should not be placed in areas of scar tissue diagnosed 
by MPI prior to implantation, as otherwise the response to 
treatment will be reduced. In the study of Chen et al. [15], 
the authors realized that the only characteristics which were 
different between the CRT patients who were responders 
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and those who were not, were the histogram bandwidth and 
phase standard deviation (extracted from phase analysis 
using Emory Cardiac Toolbox at the baseline (before CRT)), 
which is related to left ventricular mechanical dyssynchrony. 
He et al. [16] conducted research with the goal of using deep 
learning to extract new LVMD features using GSPECT MPI 
phase analysis to help selecting CRT patients. New LVMD 
parameters retrieved by automated Autoencoder (AE) from 
GSPECT MPI have the potential to enhance response pre-
diction prior to CRT. The study by Rastgou et al. [48] stated 
that the phase analysis parameters of Emory Cardiac Tool-
box and QGS program are well correlated, but these param-
eters should not be used interchangeably. Furthermore, in 
relation to entropy (a parameter in phase analysis), the lower 
value of this parameter indicates synchronized heart contrac-
tion whereas the higher value indicates desynchronize heart 
contraction [49].

In our study, the QGS program was used to extract phase 
analysis indices, and when the features were selected by 
RFE, the apex standard deviation and inferior standard 
deviation from ConQuaFea data set and apex entropy and 
lateral bandwidth from combined features were selected. 
Since these features are related to the left ventricular con-
tractile pattern and the left ventricular contractile pattern to 
the type of CRT response, the phase analysis parameters, 
as mentioned in the above studies, are related to the type of 
CRT response.

In a study by Feeny et al. [50], a machine learning model 
was developed for CRT outcome prediction by enrolling 925 
patients, with 9 clinical features (QRS morphology, QRS 
duration, New York Heart Association classification, left 
ventricular ejection fraction and end-diastolic diameter, sex, 
ischemic cardiomyopathy, atrial fibrillation, and epicardial 
left ventricular lead) used as input for the Naïve Bayes clas-
sifier. Their machine learning model outperformed the con-
ventional guideline with an increased AUC, 0.70 vs. 0.65 
(p value < 0.02), and an increased event-free survival with 
concordance index = 0.61 vs. 0.56 (p value < 0.001).

In a study by Tao et al. [19], contractile patterns were 
used to analyze CRT responses. Their results showed that 
89% of U-shaped group were responders to CRT and 11% 
were non-responders. In our study, of the 29 patients who 
performed CRT, 16 patients had U-shaped contractile pat-
terns, from which 11 responded positively, and 13 had 
non-U-shaped contractile patterns, among which 11 did 
not respond to the treatment (Table 4). It led to a success 
rate of 76% compared to traditional patient selection (16 
responders out of 29 (55% responders)) in predicting treat-
ment outcome based on contractile patterns. We also ana-
lyzed the treatment response, in case CRT was prescribed 
based on the left ventricle contractile pattern detected by 
our proposed models (Table 4). The results were slightly 

lower than the model based on the ground truth status of 
the left ventricle contractile pattern identified by the two 
nuclear medicine physicians which was expected since the 
error of pattern identification is also introduced to the final 
results. Moreover, it should be noted that according to the 
study conducted by Hartlage et al. [17], LV lead concord-
ant to the latest contracting site would be more likely to 
produce a superior CRT response beside the left ventricu-
lar contractile pattern. In fact, in their study, patients with 
a U-shaped contraction pattern and the LV lead concordant 
to the last contraction site were 92% respondent, which 
indicates the importance of examining the pattern as well 
as the correct location of the lead in CRT patients. In our 
study, the main purpose was to detect the left ventricular 
contractile pattern, and therefore, the correct location of 
the leads was not investigated.

This study inherently bears a few limitations. Regard-
ing the task of CRT outcome prediction, we set the criteria 
on the basis of the left ventricular contractile pattern and 
did not consider matters, such as the location of the CRT 
leads. Future studies might consider both to develop more 
comprehensive automated models for this important task. 
In addition, our dataset was obtained from one institute 
which undermines the robustness of the findings. Further 
studies might gather larger and diverse dataset obtained 
from multiple institutes with different image acquisition 
parameters and patients’ ethnicity to improve the reproduc-
ibility of the models [51]. However, for proof-of-concept, 
this study contained enough patients.

Conclusion

In this study, machine learning models were developed 
to predict left ventricular contractile patterns with Con-
QuaFea and radiomic features from GSPECT MPI using 
different machine learning approaches with acceptable 
and promising results. ConQuaFea performed better than 
radiomic features in recognizing left ventricular contrac-
tile pattern. In addition, by diagnosing the patients’ left 
ventricular contraction pattern, it is possible to improve 
the patient’s selection for CRT treatment.
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