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A B S T R A C T

Objective: The primary objective of our study is to address the challenge of confidentially sharing medical
images across different centers. This is often a critical necessity in both clinical and research environments,
yet restrictions typically exist due to privacy concerns. Our aim is to design a privacy-preserving data-sharing
mechanism that allows medical images to be stored as encoded and obfuscated representations in the public
domain without revealing any useful or recoverable content from the images. In tandem, we aim to provide
authorized users with compact private keys that could be used to reconstruct the corresponding images.
Method: Our approach involves utilizing a neural auto-encoder. The convolutional filter outputs are passed
through sparsifying transformations to produce multiple compact codes. Each code is responsible for recon-
structing different attributes of the image. The key privacy-preserving element in this process is obfuscation
through the use of specific pseudo-random noise. When applied to the codes, it becomes computationally
infeasible for an attacker to guess the correct representation for all the codes, thereby preserving the privacy
of the images.
Results: The proposed framework was implemented and evaluated using chest X-ray images for different
medical image analysis tasks, including classification, segmentation, and texture analysis. Additionally,
we thoroughly assessed the robustness of our method against various attacks using both supervised and
unsupervised algorithms.
Conclusion: This study provides a novel, optimized, and privacy-assured data-sharing mechanism for medical
images, enabling multi-party sharing in a secure manner. While we have demonstrated its effectiveness with
chest X-ray images, the mechanism can be utilized in other medical images modalities as well.
1. Introduction

A prime challenge in data science is finding a balance between the
need to extract useful features from data and the need to protect the
privacy of individuals and proprietary information behind the data [1–
3]. In diagnostic imaging, large volumes of data are created routinely
in hospitals, which are often necessary to be shared with various
departments or centers as part of clinical practice or research [1–3].

✩ Implementation codes available at: https://github.com/sssohrab/PRIMIS.
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However, this can raise concerns regarding the sensitive and private
information of patients being exposed and/or patients’ privacy being
violated [1–3]. To address the above-mentioned issues, data gover-
nance frameworks must carefully consider appropriate data handling
and sharing approaches that ensure and minimize risks of sensitive
information leakage [1–3]. This requires a careful balance between the
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need for data representation and the need to safeguard data privacy [1,
3].

With the widespread availability of imaging and the need for au-
tomated algorithms to analyze these images, machine learning (ML)
has been successfully applied for different tasks [4]. To ensure the
development of reliable and effective ML models, it is crucial to have
access to large and diverse sets of images acquired under various
settings considering different devices and environments, as well as
different acquisition and reconstruction protocols [5]. However, shar-
ing medical images is highly restricted owing to legal and ethical
concerns and strict privacy regulations [6–9]. Most medical images are
only available within a single department or hospital, as it is difficult
to completely de-identify personal information from medical images
and guarantee patients’ privacy [10]. Moreover, techniques like three-
dimensional rendering of tomographic images such as MRI, CT and PET
may potentially reveal the patient’s identity. Therefore, it is essential to
carefully consider and evaluate the ethical and legal concerns of sharing
medical images.

There are various strategies to design ML algorithms that take into
account data privacy concerns [6–10]. For example, in distributed
learning, local models are developed based only on individual center’s
data, and shared with a central server to create a generalized model
that works with different datasets [11]. By iterating between local
training and model fusion at the central server, on the other hand,
fully decentralized learning involves distributing computation across
different parties without the use of a central server [12]. In cases
where data owners, such as healthcare centers, need to share their data
with trusted parties, multiparty data-sharing mechanisms may be neces-
sary [10]. Several techniques, such as cryptographic [13], differential
privacy [14], generative adversarial [15], and embedding [16], have
been developed to protect data privacy in these scenarios. Conventional
image-sharing algorithms, such as obfuscation techniques (pixelization
and blurring) and encryption, have been outperformed by new tech-
niques and approaches [17–20]. Sparse coding with ambiguation (SCA)
is a recent technique that allows for the sharing of compressed and
obfuscated images with authorized parties [17–20]. These parties can
then grant access and regenerate the original images. SCA has been
shown to be a promising solution for preserving privacy in data release
techniques for various applications, including identification [17], near
neighbor search [18,19], and image sharing [20].

Privacy-preserving data release mechanisms are methods or tech-
nologies designed to protect individuals’ privacy when their personal
data are collected, stored, or shared [21,22]. These mechanisms can
be applied in various contexts. One possible example of a privacy-
assuring data release mechanism is the use of data anonymization
techniques, which aim at removing or obscuring personal informa-
tion from datasets [23]. This can be done in various ways, such as
de-identification, which removes or replaces critical information with
random values or codes; generalization, which involves replacing spe-
ific values with more general categories; and suppression, which in-
olves removing data altogether [24]. However, it is important to
ote that data anonymization is not a perfect solution for privacy
reservation, as it may not always be possible to remove personal
ensitive information from datasets completely [25,26]. There is also
he risk of re-identification, where third parties are able to link the
nonymized data back to a specific individual through other sources
f information [27]. Another example of a privacy-preserving data
elease mechanism is the use of encryption, which is a method of
ncoding data so that only individuals with valid decryption keys can
ccess (decode) it [28,29]. Encrypting personal data can help protect
t from unauthorized access or disclosure, but it is not a guaranteed
olution. For example, the encrypted data may become vulnerable to
nauthorized access if the decryption keys are lost or stolen or if there
2

s a deficiency in the designed encryption algorithm itself [30].
These technical measures are required by various legal and pol-
cy frameworks to help ensure personal data privacy [31,32]. Data
rotection laws and regulations, such as the General Data Protection
egulation (GDPR) [31] in Europe, and the Health Insurance Portability
nd Accountability Act (HIPAA) [32] in the US, establish rules for the
ollection, use, and disclosure of personal data and provide individuals
ith the right to access, correct, or delete their data [31,32]. These laws
nd regulations also include provisions for data breach notification,
hich require organizations to notify individuals and authorities when

heir personal data have been compromised [31,32]. However, the ef-
ectiveness of these frameworks can vary depending on the jurisdiction
n which they are applied [33,34].

Medical imaging uses various cutting-edge privacy protection tech-
ologies to safeguard patients’ privacy and their sensitive (private)
nformation. Technical approaches and legal and policy measures are the
wo broad categories into which these techniques can be split. Tech-
ical approaches employ various techniques and methods to protect
he confidentiality of medical images and data. Regulations for the
athering, use, and disclosure of personal health information are set
orth by legal and policy measures.

Examples of technical privacy-preservation techniques applied in
edical imaging include:

nonymization. This includes removing or obfuscating personal sen-
itive information (attributes), such as name, gender, age, weight,
ddress, and other identifying information from medical images, and
ata [35–38]. Anonymization can be achieved using various methods,
uch as removing this information, perturbation, which involves adding
andom noise to the data to make it difficult to identify individuals, or
eplacing personal information with random codes or values [39]. How-
ver, even with de-identification and anonymization in medical images,
he images may contain certain protected information. For example,
ome identifiable information could appear in ultrasound radiographic
nd mammographic images due to additional objects linked to the
atient’s information during image acquisition [39]. Moreover, 3D
acial reconstruction in tomographic images, such as PET, CT and MRI
ould reveal the patient’s identity in head and neck region imaging.

ncryption. Encryption is a widely used privacy-enhancing mecha-
ism in medical imaging [40]. It requires the use of complex math-
matical algorithms to encrypt medical images and data so that only
hose with the necessary decryption key can access them [41]. This
echnology protects patient privacy by preventing unauthorized access
r disclosure of sensitive medical data. One type of encryption that
as received particular attention in medical imaging is homomorphic
ncryption [42,43]. This technique enables one to perform calculations
n encrypted data without first decrypting it [42,44]. This is useful in
ituations where medical images or data need to be shared or analyzed
y multiple parties, as it allows collaboration without the risk of ex-
osing sensitive information [45,46]. However, it is important to note
hat homomorphic encryption can be computationally intensive and
ay not be suitable for all situations [45,46]. In general, encryption

s useful for protecting medical information from unauthorized access
r disclosure. Keys must be secure, and encryption must be strong
nough to prevent unauthorized decryption to protect patient privacy
ffectively [47].

ccess controls. This includes implementing policies and procedures
o control who has access to medical images and data. Access control
an include measures, such as authentication (verifying a person’s iden-
ity before granting access to data) and authorization (only authorized
ersonnel have access to data) [48,49].

mage deformation in medical imaging . Medical image deformation
can be used to protect patient privacy by deforming identifiable fea-

tures (such as facial features in tomographic images) to prevent the
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image from being traced to a specific individual [50]. It should be
considered that while image deformation can help protect the privacy
of patients in medical imaging, it can also reduce the diagnostic value
of images when retrieving the original image from deformation.

Federated learning . Federated learning is a learning approach to
ollaboratively train a machine learning model without sharing data
cross centers [6–9]. This can be particularly useful in the context of
edical imaging, where sensitive patient data needs to be protected
hile still allowing for the development and improvement of machine

earning models [6–9]. Several state-of-the-art privacy-preserving tech-
iques based on federated learning have been developed for use in
edical imaging [6–9,51–54]. However, this approach fulfills privacy
uring ML algorithmic developments and is not an option for scenarios
nvolving data sharing.

enerative adversarial-based learning . Generative adversarial learn-
ing methods have been used to generate and synthesize medical images
that could be shared and made available in the public domain [55,
56]. The generated images could be used for different medical image
analysis tasks but are not suited for clinical practice.

The following legal and policy measures can also be considered to
protect patient privacy in medical imaging.

• Data Protection Laws and Regulations: These establish rules and
guidelines for the collection, use, and disclosure of personal health
information and may grant individuals the right to access, correct, or
delete their personal information [31,32].

• Consent: This includes obtaining the individual’s consent before
(i) collecting, (ii) using or (iii) disclosing the individual’s health
information [31,32]. Depending on the individual or the situation,
consent may be implied or expressed, as in the case of a written
agreement [31,32].

This study aims to design a practical and efficient privacy-preserving
data-driven medical image-sharing mechanism for outsourcing medical
images. For this purpose, we build upon our previous work [20] on
SCA privacy-assuring mechanism, which is a generalized randomization
technique that combines sparse lossy coding with ambiguity, allowing
for a trade-off between utility and privacy in a principled manner [20].
We extended our previous work [20] by evaluating the SCA privacy-
assuring mechanism on larger, more diverse medical images across
various downstream imaging tasks. We also introduced a new archi-
tectural innovation for use in convolutional neural networks (CNNs) to
improve the practicality and scalability of the SCA mechanism.

Our main contributions are:

• Introducing a novel unsupervised privacy-preserving data release
mechanism for protecting patients’ private information when sharing
medical images.

• Using the 𝑆-sparsity inducing non-linearity along with other standard
non-linearities in a CNN and showing that it does not slow down the
training.

• From the deep learning perspective, we designed a fully convo-
lutional neural network whose architecture allows compact bottle-
necked codes, can produce sparse codes, and is highly efficient and
seamless to train.

• Evaluating the performance of our approach on medical imaging
tasks, including classification, segmentation, and texture analysis us-
3

ing reconstructed images.
Problem Medical images need confidential sharing across
centers, but privacy concerns create challenges.

What is
Already Known

SCA privacy-assuring mechanism, a generalized
randomization technique, blends sparse lossy coding
with ambiguity for a privacy-utility trade-off.
Previous research has focused on this but faced
scalability and diversity challenges with medical
images.

What This
Paper Adds

This paper introduces an unsupervised
privacy-preserving mechanism specifically for
medical images, integrates 𝑆-sparsity inducing
non-linearity in CNNs without compromising
training speed, and introduces an optimized CNN
architecture for compact, sparse codes while
offering comprehensive evaluations on multiple
downstream medical imaging tasks.

2. Methodology

2.1. Problem formulation

Envision a tripartite data disclosure situation that involves (i)
a data owner, (ii) data users (authorized clients), and (iii) service
provider(s)/server(s)
[19,20]. The data owner releases certain form of medical images they
hold to ‘honest but curious’ server(s) [19,20]. The data owner seeks to:
(i) safeguard primary dataset from server-side examination; (ii) provide
a specified utility to authorized users; (iii) safeguard the primary
dataset from unauthorized entities [19,20]. We explicitly define our
measure of utility and privacy as the capability of reconstruction for
authorized and unauthorized parties, respectively [19,20]. Moreover,
to adhere to Kerckhoffs’s [57] principle in cryptography, we operate
under the assumption that the data-release mechanism is publicly
disclosed [19,20,57].

To encourage the network to learn somehow semantically disentan-
gled representations, we use grouped convolutions (i.e., by grouping
the convolutional filters) with CNNs [58]. Moreover, as far as the spar-
sification of the representations is concerned, this serves an essential
practical purpose [20]. Since convolutional filters cannot be sparsified
directly, as they are largely correlated, we need a fully connected
linearity to diversify the activities before sparsification [20]. However,
imposing sparsity on a single but large code requires a very large
fully connected layer that increases the risk of over-training [20]. By
independently applying smaller linear layers on top of convolutional
filters, we reduce the computational cost of matrix multiplications and
significantly avoid over-training [20].

2.2. Notations

In this manuscript, the superscript (⋅)𝑇 indicates the transpose oper-
ation, while (⋅)† denotes the pseudo-inverse. Boldface lower-case letters
e.g., 𝐱) represent vectors, while boldface upper-case letters (e.g., 𝐗)

signify matrices [19,20]. we use identical notation for both a random
vector 𝐱 and its actual realization. The distinction between them should
e evident from the context [19,20]. The 𝑖th element of the vector 𝐱 is
epresented by 𝑥𝑖, while 𝐱𝑗 signifies the 𝑗th column of matrix 𝐗 [19,20].
n addition, we use the notation [𝑁] for the set {1, 2,… , 𝑁} and N0 for
he set of non-negative integers [19,20].

.3. Sparse data representation models

Sparse data representation has become popular thanks to its abil-
ty to significantly lower communication, storage, and computation
osts [20,59,60]. Feature extraction, clustering, classification, and re-
onstruction are just a few of the signal processing applications where
t has been extensively used [20,61–63]. There are three main models
or sparse representations, as follows.
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Fig. 1. General block diagram of the proposed Privacy-Preserving Medical Image Sharing (PRIMIS) Mechanism: A Defender with full access to the dataset releases the sparsely
obfuscated code dataset to the public domain. Authorized users (highlighted in blue) employ the shared support to de-obfuscate (purify) the code and recover the original image
data for applications such as segmentation or classification. Conversely, adversaries (highlighted in red), whether having access only to the public code or partial/full access to
the original dataset, might also attempt to reconstruct the original data for different downstream purposes. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Synthesis Model: Synthesis-based sparse representation model as-
sumes that a data sample 𝐱𝑖 ∈ R𝑁 is approximated by a linear
combination 𝐲𝑖 ∈ R𝑀 (referred to as sparse data representation) of a
small number of columns (atoms) from a dictionary 𝐃 ∈ R𝑁×𝑀 [20,64],
as 𝐱𝑖 = 𝐃𝐲𝑖 + 𝐯𝑖, where ‖𝐲𝑖‖0 ≪ 𝑀 , 𝐯𝑖 ∈ R𝑁 denotes the approximation
error in the original data domain.

Analysis Model: Analysis model uses a dictionary 𝜴∈R𝑀×𝑁 with
𝑀>𝑁 to analyze the data sample 𝐱𝑖∈R𝑁 . Given a data sample 𝐱𝑖∈R𝑁

and dictionary 𝜴 ∈ R𝑀×𝑁 it assumes the representation 𝐲𝑖 = 𝜴𝐱𝑖 is
sparse, i.e., ‖𝐲𝑖‖0≪𝑀 .

Transform Model: The sparsifying transform model [20,65] as-
sumes that the data sample 𝐱𝑖 is approximately sparsifiable using a
linear transform 𝐀∈R𝑀×𝑁 , i.e., 𝐀𝐱𝑖 = 𝐲𝑖 + 𝐳𝑖, where 𝐲𝑖 ∈R𝑀 is sparse,
i.e., ‖𝐲𝑖‖0≪𝑀 , and 𝐳𝑖 is the representation error of the data sample 𝐱𝑖
in the transform domain.

2.4. Sparse coding with ambiguation mechanism

Given a data sample 𝐱𝑖∈R𝑁 and two integer parameters 0≤𝑆𝑥≤𝑁 ,
0 ≤ 𝑆𝑛 ≤ 𝑀 −𝑆𝑥, the 𝖲𝖢𝖠 privacy-preserving data release mechanism
𝖲𝖢𝖠 ∶ R𝑁 × N0 × N0 → R𝑀 is defined as follows [17–20,66]:

𝖲𝖢𝖠
(

𝐱𝑖, 𝑆𝑥, 𝑆𝑛
)

≜ 𝑓
(

𝐱𝑖
)

⊕ 𝐧supp, (1)

where 𝑓 ∶ R𝑁 → R𝑀 is a nonlinear sparsifying transform, 𝐧supp
is (pseudo) random noise vector which is added to the orthogonal
complement of the sparse representation 𝑓

(

𝐱𝑖
)

.

2.5. Bottlenecked auto-encoders model

We present an end-to-end (distributed) optimization of a nonlin-
ear image compression scheme with a privacy guarantee inspired by
the SCA mechanism [20]. Our model can be interpreted as a ‘deep
sparsifying transform learning’ model with layered successive encoding.
Fig. 1 shows the high-level schematic of our proposed framework.
Fig. 2 illustrates the operational setups of the three main phases of our
framework which can be described as follows.
4

Training Phase. Given a collection of image instances {𝐗𝑘}𝐾𝑘=1 ∈
R𝑁 , a bottlenecked auto-encoder, comprising of 𝐿 independent en-
coders (see Fig. 3), denoted by 𝑓 [1](⋅),… , 𝑓 [𝐿](⋅), is trained where the
input sample 𝐗 is encoded to 𝐿 new sparse codes as 𝐙[𝑙] = 𝑓 [𝑙](𝐗),∀𝑙 ∈
[𝐿], with 𝐙[𝑙] ∈ R𝑀 [20]. The original domain image is reconstructed
as 𝐗̂[𝑙] = 𝑔[𝑙]

(

𝐳[𝑙]
)

, ∀𝑙 ∈ [𝐿], where 𝑔[𝑙] ∶ R𝑀 → R𝑁 ,∀𝑙 ∈ [𝐿],
are 𝐿 independent decoders, each one is paired with the correspond-
ing 𝑓 [𝑙],∀𝑙 ∈ [𝐿] [20]. The encoding process is designed to ensure
that the codes are 𝑆𝑥-sparse, i.e., card

(

supp
(

𝐙[𝑙])) = 𝑆𝑥,∀ 𝑙, where
supp

(

𝐙[𝑙]) represents the index set of nonzero element of 𝐙[𝑙] and card (⋅)
denotes cardinality of the set [20]. The encoding rate (bit rate) and
reconstruction fidelity (distortion), i.e., rate–distortion trade-off, of our
auto-encoding mechanism is controlled by the sparsity level 𝑆𝑥 and the
latent dimension 𝑀 [20].

Sharing Phase. Considering the sparse representation 𝐙[𝑙] = 𝐳[𝑙]
with sparsity level 𝑆𝑥 and taking into account the obfuscation level
𝑆𝑛 ≥ 0, the 𝖲𝖢𝖠 privacy-preserving mechanism (1) adds 𝑆𝑛 random
noise components to the orthogonal complement of 𝐳[𝑙], i.e., non-
informative components, with the same statistics (mean and variance)
as generated sparse representation to safeguard the indistinguishably
in the statistical properties [20]. Hence, we have:

𝐙[𝑙]
𝗉 = 𝐙[𝑙] ⊕ 𝐍supp. (2)

The public code 𝐙[𝑙]
𝗉 , is 𝑆𝗉-sparse, since ‖𝐙[𝑙]

𝗉 ‖0 = 𝑆𝑥 + 𝑆𝑛 = 𝑆𝗉. The
ambiguated sparse representations 𝐙[𝑙]

𝗉 ,∀ 𝑙 are then shared to the public
domain [20]. The support of the sparse clean code 𝐙[𝑙], denoted by
𝐙[𝑙]
𝗌 = supp

(

𝐙[𝑙]), is considered as shared secrecy [17–20], which is
shared with the authorized parties (centers). This secure part can even
be encrypted with low complexity [20].

Reconstruction Phase. Considering the public obfuscated sparse
representations 𝐙[𝑙]

𝗉 ,∀𝑙 ∈ [𝐿], and private support information 𝐙[𝑙]
𝗌 ,∀𝑙 ∈

[𝐿], the authorized user (data center) has the ability to ‘purify’ the
obfuscated codes. This is achieved by removing the nosiy components
of 𝐙[𝑙]

𝗉 using 𝐙[𝑙]
𝗌 , or equivalently, by decoding on the support inter-

section of these codes. Therefore, the authorized user can reconstruct
the original image data as 𝐗̂[𝑙] = 𝑔[𝑙]

(

𝐙[𝑙]
𝗉 ∣𝐙[𝑙]

𝗌

)

[20]. We consider two
hypotheses to support secrecy [17,20,67]:
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Fig. 2. Operational setups of the proposed PRIMIS framework utilizing SCA mechanism.
Fig. 3. Sparse Code-Map Generation using Grouped Linear Blocks: In this neural network architecture, each convolutional feature map on the encoder side is individually processed
hrough a dedicated fully-connected linear layer followed by an element-wise nonlinearity to induce sparsity. Correspondingly, the decoder employs tied connections to accurately
econstruct these sparsified convolutional feature maps. This specialized block of grouped linear layers is strategically integrated at the middle of the network.
1: The authorized support 𝐙𝗌.
0: The unauthorized support generated and claimed by an adver-
sary.

We consider two adversarial strategies in our study. The first strat-
gy involves an unauthorized reconstruction where the adversary does
ot have access to a subset of the original dataset. However, they
o have access to the trained decoder belonging to the data owner
defender), which was leaked or stolen. In the second strategy, it is
ssumed that the adversary has access to a subset of the original image
amples, as well as the trained encoder–decoder. This means that, in
his scenario, the adversary possesses pairs of images along with their
orresponding sparse, obfuscated codes and the reconstructed images.

.6. Connection with modern data compression schemes

Data compression refers to the method of shrinking the size of a file
r data stream to save storage space or speed up the transmission of
ata over a network [68]. Classical data compression schemes often rely
n a ‘transform coding’ technique [69,70], which involves transforming
he data into a different representation that is more amenable to com-
ression. This is typically done using a mathematical transformation,
uch as a discrete cosine transform or a wavelet transform, which
5

converts the data from the original domain (e.g., time or space) into
a new domain, where it can be more easily compressed [69]. The
transformed data is then quantized, which involves dividing it into a
finite number of levels or bins and encoded using a lossless compression
algorithm, such as Huffman coding [71]. The resulting code is then
transmitted or stored and can be recovered at the destination by
reversing the lossless compression and transform operations [72,73].
Transform coding is a widely used technique in data compression
because it can effectively remove redundancies and regularities in the
data, making it easier to compress [69]. More recent data compression
techniques often use auto-encoders and generative models [74–77].
An auto-encoder is designed to learn how to encode data in a low-
dimensional bottleneck representation, replacing the typically linear
transform code with a learned non-linear transform. When the data has
intricate structures and patterns that may not be easily projected into
a sparse domain, autoencoders can still be able to learn an efficient
representation on a low dimensional manifold. The latent representa-
tion is still quantized and undergoes entropy coding, similar to classical
compression techniques. However, the distribution used for entropy
coding can also be learned directly form data to minimize rate loss.
Generative models can further be used as the decoder, particularly to
improve the perceived quality of the reconstructed image [78,79].
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2.7. Connection with the CLUB model

The complexity-leakage-utility bottleneck (CLUB) [80] model is a
generalization of the sufficient statistic methods that allow a model
to smoothly trade-off the maximality of the informativeness of the
bottleneck variable (𝐙) for the utility task at hand (𝐔), against the
compressiveness of the bottleneck variable (𝐙) from data (𝐗), while
limiting statistical inference about a sensitive random object 𝐒 that
depends on 𝐗 and is possibly depended on 𝐔. Considering the Markov
chain (𝐔,𝐒) → 𝐗 → 𝐙 and denoting the mutual information between 𝐗
and 𝐙 by I (𝐗;𝐙), this trade-off can be formulated by CLUB functional
as follows:

𝖢𝖫𝖴𝖡
(

𝑅u, 𝑅s, 𝑃𝐔,𝐒,𝐗
)

∶= inf
𝑃𝐙∣𝐗∶

(𝐔,𝐒)−◦−𝐗−◦−𝐙

I (𝐗;𝐙)

s.t. I (𝐔;𝐙) ≥ 𝑅u, I (𝐒;𝐙) ≤ 𝑅s. (3)

Setting 𝑅s ≥ H (𝐒) in (3), the CLUB model reduces to the information
bottleneck (IB) principle [80,81], while setting 𝐔 ≡ 𝐗 and 𝑅z ≥ H (𝐗) in
3), the CLUB model reduces to the privacy funnel (PF) model [80,82].

In the privacy-preserving image-sharing framework, our utility vari-
ble is 𝐔 ≡ 𝐗, i.e., our goal is to reconstruct the original data 𝐗
sing the bottleneck variable 𝐙, with minimum information loss [80].
his allows for further downstream tasks whether using the encoded
ompressed representations 𝐙 or the reconstructed original domain
ata 𝐗̂ [80]. This scenario is referred to as unsupervised CLUB in [80].
n this scenario, our objective is to obtain a compact information-
reserving representation 𝐙 of original data 𝐗, which can also be used
or various utility tasks at the authorized parties in an unsupervised
ashion [80]. As studied in [80], the information utility part of deep
ariational CLUB (DVCLUB) Lagrangian functional can be decomposed
nto two terms (i) reconstruction fidelity, and (ii) distribution discrep-
ncy loss. In this research, we use a number of different reconstruction
idelity measures, such as mean absolute error (MAE), mean error (ME),
ean squared error (MSE), root mean square error (RMSE), structural

imilarity index measure (SSIM), and peak signal-to-noise ratio (PSNR).

.8. Bottleneck auto-encoder architecture

We use a similar network as in [20], whose design is motivated by
hree important principles. Firstly, as is fundamental to the structure
f our proposed privacy solution, the network should provide com-
6

act codes through bottlenecked structures [20]. This rules out many p
opular designs like the family of U-Net architectures, where skip con-
ections break the bottleneck constraint [20]. Secondly, the compact
odes should be sparse [20]. While this is not a usual constraint within
odern deep learning networks, we found that the ‘‘top-S’’ operator

mplemented within deep learning (DL) frameworks works better than
ard- or soft-thresholding [20]. Thirdly, the network design should fit
typical DL practice (e.g., smooth back-propagation, avoiding over-

itting) [20]. Similarly to ReLU, the top-S operator (equivalent to a
daptive-threshold hard-thresholding function) has discontinuities only
t the threshold points and does not hinder back-propagation to run
moothly [20]. However, on the one hand, applying them directly
n convolutional layer outputs does not provide sparsity at diverse
ocations, and hence, limits the coding efficiency [20]. On the other
and, using a dense matrix multiplication after the convolutional out-
uts would require a huge matrix to be trained, which can easily
verfit [20]. Therefore, a matrix multiplication with a block-sparse
tructure is used after convolutional filters to avoid inter-mixing val-
es from different convolutional filters [20]. This would diversify the
parsity pattern between different images and avoid the huge number
f training parameters [20]. While these principles were common in
he work of [20], current work improves the efficiency of this latter
tage by implementing this group-sparse matrix multiplication as an
quivalent convolution operation that could accept arbitrary image
izes as the input and has less number of parameters. Therefore, our
esign is fully convolutional, as opposed to the one proposed in [20].

.9. Framework, dataset, training, evaluation approaches

Fig. 4 provides a summary of this study. We focused on chest X-ray
mages, and datasets were gathered from different data sources [83–
8]. All networks were trained in a 2D manner with an Adam opti-
ization with a learning rate starting with 0.001 and a weight decay

f 0.0001 in 500,000 images using a patch size of 64 by 64. Mean
quared error loss was used for network training. We evaluated the pro-
osed model in different scenarios, including quantitative analysis and
lassification, segmentation, and texture analysis tasks. In addition, we
erformed attacks on the random output of the model using different
upervised and unsupervised deep neural networks.

.9.1. Quantitative image level analysis
A qualitative evaluation of the proposed method was performed on

60,000 external test samples of chest X-ray images. To this end, the

redicted images were compared with reference original images. The
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Table 1
Summary of quantitative parameters (mean±SD and CI95%) for image domain fidelity measures: MAE, ME, RMSE, PSNR, and SSIM; setting
sparsity levels 𝑆𝑥 = 16, 8, 4.
Parameter Sparsity level MAE ME RMSE PSNR SSIM

Mean ± Sd
𝑆𝑥 = 4 9.35 ± 8.19 9.35 ± 8.19 37.63 ± 9.22 16.86 ± 2.03 0.48 ± 0.05
𝑆𝑥 = 8 1.07 ± 0.27 1.07 ± 0.27 5.06 ± 1.29 34.29 ± 2.06 0.95 ± 0.01
𝑆𝑥 = 16 0.71 ± 0.2 0.71 ± 0.2 3.08 ± 0.58 38.48 ± 1.56 0.98 ± 0.01

CI95%
𝑆𝑥 = 4 9.31 to 9.39 9.31 to 9.39 37.58 to 37.67 16.85 to 16.87 0.48 to 0.48
𝑆𝑥 = 8 1.07 to 1.07 1.07 to 1.07 5.05 to 5.07 34.28 to 34.3 0.95 to 0.95
𝑆𝑥 = 16 0.71 to 0.71 0.71 to 0.71 3.08 to 3.09 38.48 to 38.49 0.98 to 0.98
t
a
r
b
(
H

quality of predicted images was assessed using voxel-wise ME, voxel-
wise MAE, and voxel-wise RMSE. Moreover, the SSIM and peak PSNR
were used as quantitative measures of the quality of the predicted chest
X-ray images.

2.9.2. Image classification task
For classification, we used a subset of external validation set for

different classification tasks, including:

Task 1: Three class classification of normal (2020 patients), bacte-
rial pneumonia (2300 patients), and viral (2270 patients)
pneumonia.

Task 2: Classification of bacterial pneumonia (2020 patients) against
viral pneumonia (2070 patients).

Task 3: Classification of viral COVID-19 pneumonia (610 patients)
against viral pneumonia (610 patients).

Task 4: Classification of viral COVID-19 pneumonia (610 patients)
against viral pneumonia + bacterial pneumonia (630 patients).

Task 5: Classification of normal cases (3630 patients) against viral
pneumonia + bacterial pneumonia (4290 patients).

Task 6: Classification of normal (2300 patients) cases against viral
pneumonia(2270 patients).

Task 7: Classification of normal (2020 patients) cases against bacterial
pneumonia (2300 patients).

Task 8: Classification of normal (610 patients) cases against viral
COVID-19 pneumonia (610 patients).

For each task, data were split into train/validation (70/10%) and
test sets (20%), and all quantitative analyses were performed and
reported on unseen test sets (there is no overlap between different sets).
Training was performed on each set of images separately and tested on
different images.

2.9.3. Image segmentation task
Image segmentation was performed on 700 image samples with

whole lung segmentation as a subset of the external validation set.
Data were split into train/validation (70/10%) and test set (20%),
and quantitative analyses performed and reported on unseen test set.
We implemented U-Net architecture for the core of the segmenta-
tion task. Training was performed on each set of images separately
and tested on different images. Different evaluation metrics, including
quantitative segmentation metrics, were implemented to evaluate the
segmentation performance on original and predicted images. Standard
image segmentation metrics, including the Dice similarity coefficient
(DSC), Jaccard similarity coefficient (JSC), false-negative rate, false-
positive rate, mean and standard deviation (SD) of surface distance,
and Hausdorff distance, were used for assessment.

2.9.4. Image texture task
In this task, we used 700 patient images available with whole lung

segmentation. Prior to feature extraction, the image voxel was resized
to an isotropic pixel size of 1 × 1 mm2, and the intensity was discretized
into 64 bins. All radiomics feature extraction was performed using
PyRadiomics [89] Python library, including intensity (n = 18), second-
order texture features, such as gray level co-occurrence matrix (GLCM,
𝑛 = 24), higher-order features, namely gray level size zone matrix
7

(GLSZM, 𝑛 = 16), neighboring gray tone difference matrix (NGTDM,
𝑛 = 5), gray level run length matrix (GLRLM, 𝑛 = 16), and gray level
dependence matrix (GLDM, 𝑛 = 14). All extracted radiomics features
are compliant with the Image biomarker standardization initiative
(IBSI) guidelines [89,90]. We calculated percent relative error (RE)
and percent absolute relative error (ARE) with respect to the original
image for each predicted image. Intraclass correlation (ICC) tests were
performed for radiomics feature reproducibility in different approaches
with respect to the original image. We classified radiomic features
based on the ICC value into 4 groups: Poor reproducibility (ICC ≤ 0.40),
fair reproducibility (0.40 < ICC ≤ 0.60), good reproducibility (0.60
<ICC ≤ 0.75), and excellent reproducibility (0.75 < ICC ≤ 1.00).

2.9.5. Adversarial attack analysis
For attack analysis, we used the obfuscated image as input and tried

to infer the original image using different supervised and unsupervised
networks. To this end, image-to-image translation, and supervised algo-
rithms, including U-Net, V-Net, and GAN, were used in the supervised
approach, whereas Cycle GAN was implemented in the unsupervised
approach. In this evaluation, we used 160,000 external test samples,
where the data were split into train/validation (70/10%) and test set
(20%). Quantitative analyses were performed and reported on unseen
test sets. A batch size of 30, an Adam optimizer, a learning rate of
0.001, an L2-norm loss, and a weight decay of 0.0001 were used in
these networks.

3. Results

3.1. Qualitative image analysis

For visual comparison, Fig. 5 shows some examples of the original
image and predicted images for different 𝑆𝑥’s and their corresponding
bias maps with respect to the original images. These figures show that
the predicted images generated by different 𝑆𝑥 are in good agreement
with original images despite the variability in structures and textures.
When 𝑆𝑥 =4, the patch structure affects the image texture; while with
𝑆𝑥=16 reconstructed images were almost identical to the original ones,
achieving the lowest differences.

3.2. Quantitative image level analysis

Table 1 presents the reconstruction error for different sparsity levels
(𝑆𝑥 = 4, 𝑆𝑥 = 8 and 𝑆𝑥 = 16) with respect to the original image using
he 160,000 external test set (Supplemental Fig. 1 presents the results
s a box plot for better visualization). For all the metrics compared, the
esults show that the lowest error was achieved with 𝑆𝑥 = 16, followed
y 𝑆𝑥 = 8. In terms of ME, 𝑆𝑥 = 16 and 𝑆𝑥 = 8 achieved, 0.71±0.2
CI95%: 0.71−0.71) and 1.07±0.27 (CI95%: 1.07−1.07), respectively.
owever, a ME of 9.35±8.9 (CI95%: 9.31−9.39) was achieved for

𝑆𝑥 = 4 images. 𝑆𝑥 = 16 images, generated the highest SSIM and PSNR
(38.48±1.56 (CI95%: 38.48−34.3) and 0.98±0.01 (CI95%: 0.98−0.98)
respectively).

Fig. 6 shows the joint histogram analysis displaying the correlation
between the original and different predicted images. The results show

that the images obtained with the 𝑆𝑥 = 16 had the highest correlation



Journal of Biomedical Informatics 150 (2024) 104583I. Shiri et al.
Fig. 5. Comparison of the original images vs (i) authorized reconstructed images for sparsity levels 𝑆𝑥 = 4, 8, 16, and (ii) their corresponding difference bias maps in different
patients. Patchy structures could be seen in these images as a result of the training patch size in images.
Fig. 6. Joint histogram analysis displaying the correlation between different reconstructed images and original images. The plot shows that 𝑆𝑥 = 16 images had the highest
correlation with 𝑅2 of 0.9999 followed by 𝑆𝑥 = 8 with 𝑅2 of 0.9991 and the lowest correlation achieved by 𝑆𝑥 = 4 images with 𝑅2 of 0.7306.
with 𝑅2 = 0.9999 followed by 𝑆𝑥 = 8 with 𝑅2 = 0.9991, and the lowest
correlation is achieved when 𝑆𝑥 = 4 with 𝑅2 = 0.7306.

3.3. Image classification

Table 2 presents the image classification results for models trained
and tested with different 𝑆𝑥 values. The results show that models
trained with 𝑆𝑥 = 16, 𝑆𝑥 = 8, and original images yielded almost the
same performance for different tasks, and performance did not change
drastically when testing on these three (i.e., trained on original and
tested on 𝑆 = 16, 𝑆 = 8). This illustrates that the important features
8

𝑥 𝑥
for classification are preserved in these images. Models trained on
𝑆𝑥 = 4 and tested on 𝑆𝑥 = 4 revealed the same performance compared
to other models; however, testing with 𝑆𝑥 = 16, 𝑆𝑥 = 8, and original
images depicted low performance. For models trained with 𝑆𝑥 = 16,
𝑆𝑥 = 8, and original images, the lowest performance was achieved in
the test data set generated by 𝑆𝑥 = 4. In addition,

These tasks were performed on subsets of external validation sets.
Fig. 7 represents the ROC curve for comparison of different Tasks (1–
8). The model was trained on original images and tested on different
images, including original and predicted images. We also provided
trained and tested models using different image sets. The ROC curves
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Fig. 7. ROC curve comparison for different training and test sets in different Tasks 1–8. The training was performed on the original images, whereas the tests were performed on
different images for each task. Task 1: Three class classification of normal, bacterial, and viral pneumonia; Task 2: Classification of bacterial pneumonia against viral pneumonia;
Task 3: Classification of viral COVID-19 pneumonia against viral pneumonia; Task 4: Classification of viral COVID-19 pneumonia against viral pneumonia + bacterial pneumonia,
Task 5: Classification of normal cases against viral pneumonia +bacterial pneumonia, Task 6: classification of normal cases against viral pneumonia, Task 7: classification of normal
cases against bacterial pneumonia, Task 8: classification of normal cases against viral COVID-19 pneumonia.
Table 2
AUC of different classification tasks for different training and test sets, Task 1: Three class classification of normal, bacterial, and viral
pneumonia, Task 2: Classification of bacterial pneumonia against viral pneumonia, Task 3: Classification of viral COVID-19 pneumonia against
viral pneumonia, Task 4: Classification of viral COVID-19 pneumonia against viral pneumonia + bacterial pneumonia, Task 5: Classification of
normal cases against viral pneumonia +bacterial pneumonia, Task 6: classification of normal cases against viral pneumonia, Task 7: classification
of normal cases against bacterial pneumonia, Task 8: classification of normal cases against viral COVID-19 pneumonia.

Train Test Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

𝑆𝑥 = 4

𝑆𝑥 = 4 0.93 0.85 0.98 0.94 0.99 0.99 0.96 0.93
𝑆𝑥 = 8 0.86 0.78 0.98 0.92 0.98 0.99 0.92 0.86
𝑆𝑥 = 16 0.83 0.75 0.97 0.88 0.98 0.99 0.9 0.83
Original 0.83 0.73 0.97 0.89 0.98 0.99 0.88 0.82

𝑆𝑥 = 8

𝑆𝑥 = 4 0.86 0.85 0.99 0.95 0.96 0.99 0.91 0.97
𝑆𝑥 = 8 0.91 0.85 0.99 0.95 0.99 0.99 0.96 0.98
𝑆𝑥 = 16 0.89 0.87 0.99 0.94 0.98 0.99 0.96 0.98
Original 0.88 0.86 0.99 0.95 0.98 0.99 0.95 0.97

𝑆𝑥 = 16

𝑆𝑥 = 4 0.85 0.8 0.98 0.9 0.94 0.99 0.89 0.97
𝑆𝑥 = 8 0.91 0.79 0.98 0.92 0.98 0.99 0.97 0.97
𝑆𝑥 = 16 0.93 0.82 0.98 0.92 0.99 0.99 0.98 0.98
Original 0.93 0.82 0.98 0.93 0.99 0.99 0.97 0.97

Original

𝑆𝑥 = 4 0.84 0.89 0.96 0.94 0.92 0.97 0.81 0.84
𝑆𝑥 = 8 0.9 0.84 0.97 0.95 0.98 0.99 0.94 0.92
𝑆𝑥 = 16 0.92 0.85 0.97 0.95 0.99 0.99 0.95 0.93
Original 0.92 0.85 0.97 0.96 0.99 0.99 0.95 0.93
were presented in supplemental Figs. 2–9 for Tasks 1–8, respectively.
Supplemental Tables 1–3 summarize the accuracy, sensitivity, and
specificity metrics for training and testing on different sets for different
tasks, respectively.

3.4. Image texture analysis

Fig. 8 represents the heat map of ARE, RE, and ICC metrics of
radiomic features extracted from lung segmentation in different recon-
structed images with respect to the original images. As shown in this
figure, most features showed RE less than 10% and ICC higher than
0.75 in 𝑆𝑥 = 16 and 𝑆𝑥 = 8, demonstrating the excellent recovery of
subtle textures of images.
9

3.5. Image segmentation analysis

Table 3 (CI95% presented in Supplemental Table 4) provides a sum-
mary of the quantitative analysis of segmentation metrics for different
training and test sets. As presented in this table, training and testing
on a different set of images provide quantitative metrics that are in
good agreement. The lowest dice score (0.92±0.05 was achieved when
training on 𝑆𝑥 = 16 and testing on 𝑆𝑥 = 4. There were no statistically
significant differences between the original, 𝑆𝑥 = 8 and 𝑆𝑥 = 16 images
when training and testing these three image sets.

For visual comparison, Fig. 9 depicts some examples of segmen-
tation when training and testing a different set of images, including
original and predicted images from a subset of external test sets. As
shown in this figure, the segmentations provided by different training
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Fig. 8. Heat map of absolute relative error (ARE), relative error (RE), and ICC test of
radiomic features extracted from lung segmentation in different reconstructed images
with respect to original images.

and test sets are in good agreement with manual segmentation in
different patients.

3.6. Attack analysis

Table 4 shows the attacks outcomes for four networks (U-Net, V-
Net, GAN, and C-GAN) when applied to noisy images with 𝑆𝑥 = 16.
As seen in Table 3, none of these methods successfully recovered
the original images from the noisy structures. The supervised GAN
achieved the highest SSIM (0.54++0.07 (CI95%: 0.54−55))). Fig. 10
shows the comparison of the outputs of these networks when applied to
attack analysis using different supervised and unsupervised networks.
As shown in the figure, none of the networks was able to recover the
original images from the noisy ones effectively.
10
Fig. 9. Comparison of different image segmentation of the original images, recon-
structed (𝑆𝑥 = 16, 𝑆𝑥 = 8 and 𝑆𝑥 = 4) images. Red: Ground Truth, Green: 𝑆𝑥 = 4, Blue:
𝑆𝑥 = 8, Yellow: 𝑆𝑥 = 16, purple: Original. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Comparison of different network outputs for different attack analyses using
different supervised (U-Net, V-Net, and GAN) and unsupervised (C-GAN) networks.
Noisy images of 𝑆𝑥 = 16 were set as input, and the neural networks attempted to
reconstruct the original images.

4. Discussion

Our research focused on using the SCA privacy-assuring mechanism
for privacy-preserving medical image sharing. The SCA mechanism is
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Table 3
Segmentation results for different training and test sets.

Train Test Dice Jaccard False negative False positive Mean surface distance Std surface distance

𝑆𝑥 = 4

𝑆𝑥 = 4 0.94 ± 0.04 0.88 ± 0.06 0.1 ± 0.05 0.02 ± 0.05 0.14 ± 0.09 1.21 ± 1.02
𝑆𝑥 = 8 0.94 ± 0.04 0.88 ± 0.06 0.1 ± 0.05 0.02 ± 0.05 0.14 ± 0.09 1.21 ± 1.02
𝑆𝑥 = 16 0.93 ± 0.04 0.88 ± 0.06 0.1 ± 0.05 0.02 ± 0.05 0.14 ± 0.09 1.23 ± 1.01
Original 0.93 ± 0.04 0.88 ± 0.06 0.1 ± 0.05 0.02 ± 0.05 0.15 ± 0.10 1.30 ± 1.09

𝑆𝑥 = 8

𝑆𝑥 = 4 0.93 ± 0.03 0.88 ± 0.05 0.1 ± 0.05 0.03 ± 0.03 0.13 ± 0.07 1.20 ± 0.80
𝑆𝑥 = 8 0.94 ± 0.03 0.89 ± 0.05 0.1 ± 0.05 0.01 ± 0.02 0.12 ± 0.06 1.02 ± 0.80
𝑆𝑥 = 16 0.94 ± 0.03 0.89 ± 0.05 0.1 ± 0.05 0.01 ± 0.01 0.12 ± 0.06 1.02 ± 0.79
Original 0.94 ± 0.03 0.89 ± 0.05 0.1 ± 0.05 0.01 ± 0.01 0.12 ± 0.06 1.02 ± 0.79

𝑆𝑥 = 16

𝑆𝑥 = 4 0.92 ± 0.05 0.85 ± 0.08 0.08 ± 0.08 0.08 ± 0.06 0.19 ± 0.18 1.82 ± 1.66
𝑆𝑥 = 8 0.94 ± 0.04 0.89 ± 0.06 0.09 ± 0.06 0.02 ± 0.03 0.12 ± 0.08 1.10 ± 0.93
𝑆𝑥 = 16 0.94 ± 0.03 0.89 ± 0.05 0.09 ± 0.05 0.02 ± 0.03 0.12 ± 0.08 1.07 ± 0.89
Original 0.94 ± 0.03 0.9 ± 0.05 0.08 ± 0.05 0.02 ± 0.03 0.11 ± 0.08 1.06 ± 0.89

Original

𝑆𝑥 = 4 0.93 ± 0.07 0.87 ± 0.09 0.08 ± 0.09 0.06 ± 0.04 0.17 ± 0.39 1.59 ± 2.63
𝑆𝑥 = 8 0.94 ± 0.03 0.90 ± 0.06 0.09 ± 0.05 0.02 ± 0.03 0.11 ± 0.07 0.99 ± 0.80
𝑆𝑥 = 16 0.94 ± 0.04 0.90 ± 0.06 0.09 ± 0.05 0.02 ± 0.04 0.11 ± 0.08 1.04 ± 0.94
Original 0.94 ± 0.03 0.90 ± 0.06 0.09 ± 0.05 0.02 ± 0.04 0.11 ± 0.08 1.03 ± 0.92
Table 4
Summary of quantitative metrics (mean ± sd, and CI95) for image domain parameters of different attacks. MAE: Mean Absolute Error, ME:
Mean Error, RMSE: Root Mean Square Error, PSNR: peak signal-to-noise ratio, SSIM: Structural Similarity Index, U-Net: Supervised 2D U-Net,
V-Net: Supervised 2D V-Net, GAN: Supervised 2D GAN, C-GAN: Unsupervised 2D Cycle GAN.

Parameter Networks MAE ME RMSE PSNR SSIM

Mean ± Sd

U-Net 22.93 ± 4.67 −0.63 ± 11.47 29.5 ± 5.45 18.90 ± 1.49 0.51 ± 0.06
V-Net 23.60 ± 4.51 −4.57 ± 11.47 30.27 ± 5.26 18.67 ± 1.45 0.50 ± 0.06
GAN 21.67 ± 5.70 4.68 ± 11.33 27.95 ± 6.68 19.44 ± 1.83 0.54 ± 0.07
C-GAN 31.13 ± 6.38 5.36 ± 13.82 40.33 ± 7.12 16.16 ± 1.32 0.36 ± 0.04

CI95%

U-Net 22.88 to 22.98 −0.76 to −0.51 29.44 to 29.56 18.88 to 18.92 0.51 to 0.51
V-Net 23.55 to 23.65 −4.69 to −4.44 30.21 to 30.33 18.65 to 18.68 0.50 to 0.50
GAN 21.60 to 21.73 4.55 to 4.80 27.88 to 28.03 19.42 to 19.46 0.54 to 0.55
C-GAN 31.06 to 31.2 5.21 to 5.51 40.25 to 40.41 16.15 to 16.18 0.36 to 0.36
a generalization of randomization techniques that allow for a trade-
off between utility and privacy in a principled manner [18–20]. To
improve the practicality and scalability of the SCA mechanism for use in
CNNs, we proposed two architectural innovations: multiple code-maps
using fully-connected groups on convolutional filters and the 𝑆-sparsity
non-linearity in CNNs [18–20]. Additionally, we connected our frame-
work to modern data compression techniques and the CLUB [80] model
to further enhance its effectiveness and efficiency.

In our three-party data release scenario, the data owner shares
representations of their medical image data with an ‘honest but curious’
server [18–20]. The data owner’s goal is to (i) protect original images
from server-side analysis, (ii) provide a predetermined level of utility
for their authorized clients, and (iii) protect original images from
unauthorized parties or potential adversaries [18–20]. We define the
measure of utility as the capability of reconstruction for authorized
parties, and the measure of privacy as the capability of reconstruction
for unauthorized parties [18–20].

In order to follow Kerckhoffs’ Principle in cryptography [57], we
assume that the data release mechanism is publicly known [18–20]. In
our evaluation, we found that the proposed method preserves important
image content, and the different developed models achieve original
image-level performance for various tasks, such as image classification,
image segmentation, and texture analysis. Moreover, we discovered
that various learning approaches, such as supervised and unsupervised
image-to-image conversion, were unable to recover the images during
attack analysis effectively.

There have been several studies on privacy-preserving techniques
for medical images. In [91], a client–server system based on adversarial
learning was proposed to obfuscate patient images to protect brain MR
images’ privacy. The system consists of encoders to remove patients’
identity features, discriminators to identify patients from the encoded
images and medical image analysis networks for image segmentation.
However, the method presented in [50] does not encode the segmenta-
tion map, which could potentially reveal patient information, such as
11
3D renderings of the segmentation. In [50], a client–server system was
proposed to preserve patient identity in brain MR images through the
use of pseudo-random non-linear deformations on MR images, resulting
in proxy images. A deep neural network was trained in an adversar-
ial manner, with the flow-field generator, generating pseudo-random
deformations to remove structural information.

Chen et al. [92] proposed a combination of encryption and digital
watermark technology for the privacy-preserving sharing of medical
images. The authoritative diagnosis results and image hash are inte-
grated into QR code images using the discrete cosine transform (DCT)
and inverse DCT (IDCT) algorithms and presented on watermark im-
ages [92]. This method was evaluated on chest X-rays and effectively
preserved privacy against various attacks. In a more recent study, [3]
used a GAN to create a medical image dataset that overcomes data-
sharing barriers. The goal was to generate synthetic patient data with
similar properties to the original images but without personal infor-
mation [3]. The method was evaluated on chest X-ray and CT images
and was found to produce high-quality generated images [3]. Popescu
et al. [93] proposed the use of a variational auto-encoder combined
with random non-bijective pixel intensity mapping, called obfuscation,
for angiographic images. They claimed to be able to ensure privacy
without allowing the recovery of coronary vessels using AI attacks.

The SCA privacy mechanism has several advantages for sharing
privacy-preserving medical images. In the current research, we devel-
oped a system that is immune to various cyber-attacks and can be
implemented on large datasets. This approach allows compact images
to be shared with any party, even publicly available, and authorized
clients can restore the images without loss of information or ambigu-
ity. Moreover, our method allows the sharing of real data instead of
synthetic data. In addition, the SCA approach can be integrated into
any learning method, such as centralized, decentralized, distributed,
and blended learning methods.

As for the real clinical implementation of the proposed solution

in a practical setting, the training phase has similar considerations as
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any typical modern DL application. This comes with a strong empha-
sis on the security of patient data during training, as is required in
hospital settings. More importantly, the key encryption and sharing
phase should be done with care and through secure communication and
storage protocols, as the security of the whole system relies on keeping
the keys secure. Since image sharing is typically done in multi-party
settings, e.g., between patients, clinics, imaging centers, and hospitals,
asymmetric key encryption solutions, such as RSA [94], could be used
to encrypt the keys based on the recipient’s public key. Fortunately, the
size of plaintext keys, i.e., the correct position of non-zero elements
in the sparse codes, is typically very small, as we showed in our
experiments, and hence, the RSA or its variants may directly be applied.
Finally, for the last phase, the decryption and decoding could be done
in the user’s computer, as the proposed decoder is relatively small and
fast inference on consumer CPUs is possible in seconds for relatively
large images.

The current study also has limitations. One limitation is that the
proposed method only uses chest X-rays for evaluation. Other imaging
modalities, such as CT, MRI, and PET, may contain more sensitive
personal information that can be extracted from the images, such as
the reconstruction of faces from 3D renderings [95]. However, the
current study demonstrates the feasibility of preserving patient privacy
in medical images, and further studies are needed to evaluate its
performance on other imaging modalities. Furthermore, it is important
to consider the privacy-preserving limitations of SCA methods while
preserving important features relevant to radiological imaging tasks
such as classification, segmentation, and texture analysis. The proposed
methodology has shown promise in preserving privacy in 2D chest X-
ray images. There is potential to expand it to other imaging modalities,
such as ultrasound, and tomographic images including PET, CT, and
MRI.

Our evaluation of generated images primarily relied on global image
metrics, such as quantitative image-based metrics and radiomic fea-
tures. However, due to the inherent limitations of the encoder–decoder
architecture, smaller structures might be overlooked. Therefore, fu-
ture studies should include a qualitative analysis by physicians to
assess the impact of these limitations on small structures and clinical
decision-making.

In addition to these areas of research, the SCA mechanism could
be used in other situations, such as data sharing between several data
owners for developing ML algorithms and any image-sharing proto-
col among authorized parties. The suggested approach could also be
used to address privacy concerns during decentralized, distributed, and
federated learning [6–9]. As data collection and statistical analysis be-
come increasingly prevalent in the healthcare industry, it is important
to develop robust privacy-preserving techniques that can be widely
adopted and used to ensure the protection of patient privacy. The SCA
mechanism provides a promising robust solution to these challenges.

5. Conclusion

We developed a privacy-preserving medical image-sharing system
that is resistant to different types of network attacks. Our approach
leverages the SCA mechanism [18,20], a generalization of randomiza-
tion techniques that allows for a trade-off between utility and privacy in
a principled manner. We also introduced two architectural innovations
for use in CNNs to improve the practicality and scalability of the
SCA mechanism: multiple code maps using fully connected groups on
convolutional filters and the 𝑆-sparsity non-linearity in CNNs. The
results demonstrate the promising potential of the proposed method in
private medical image sharing. While the current study only evaluated
the proposed method on chest X-ray images, future research could
explore its performance on other imaging modalities and in different
privacy scenarios. The SCA mechanism offers a promising solution to
the challenges of preserving privacy while still allowing for accurate
12

and useful analysis.
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