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Abstract
Purpose  Total metabolic tumor volume (TMTV) segmentation has significant value enabling quantitative imaging biomark-
ers for lymphoma management. In this work, we tackle the challenging task of automated tumor delineation in lymphoma 
from PET/CT scans using a cascaded approach.
Methods  Our study included 1418 2-[18F]FDG PET/CT scans from four different centers. The dataset was divided into 900 
scans for development/validation/testing phases and 518 for multi-center external testing. The former consisted of 450 lym-
phoma, lung cancer, and melanoma scans, along with 450 negative scans, while the latter consisted of lymphoma patients 
from different centers with diffuse large B cell, primary mediastinal large B cell, and classic Hodgkin lymphoma cases. Our 
approach involves resampling PET/CT images into different voxel sizes in the first step, followed by training multi-resolution 
3D U-Nets on each resampled dataset using a fivefold cross-validation scheme. The models trained on different data splits 
were ensemble. After applying soft voting to the predicted masks, in the second step, we input the probability-averaged 
predictions, along with the input imaging data, into another 3D U-Net. Models were trained with semi-supervised loss. We 
additionally considered the effectiveness of using test time augmentation (TTA) to improve the segmentation performance 
after training. In addition to quantitative analysis including Dice score (DSC) and TMTV comparisons, the qualitative evalu-
ation was also conducted by nuclear medicine physicians.
Results  Our cascaded soft-voting guided approach resulted in performance with an average DSC of 0.68 ± 0.12 for the 
internal test data from developmental dataset, and an average DSC of 0.66 ± 0.18 on the multi-site external data (n = 518), 
significantly outperforming (p < 0.001) state-of-the-art (SOTA) approaches including nnU-Net and SWIN UNETR. While 
TTA yielded enhanced performance gains for some of the comparator methods, its impact on our cascaded approach was 
found to be negligible (DSC: 0.66 ± 0.16). Our approach reliably quantified TMTV, with a correlation of 0.89 with the ground 
truth (p < 0.001). Furthermore, in terms of visual assessment, concordance between quantitative evaluations and clinician 
feedback was observed in the majority of cases. The average relative error (ARE) and the absolute error (AE) in TMTV 
prediction on external multi-centric dataset were ARE = 0.43 ± 0.54 and AE = 157.32 ± 378.12 (mL) for all the external test 
data (n = 518), and ARE = 0.30 ± 0.22 and AE = 82.05 ± 99.78 (mL) when the 10% outliers (n = 53) were excluded.
Conclusion  TMTV-Net demonstrates strong performance and generalizability in TMTV segmentation across multi-site 
external datasets, encompassing various lymphoma subtypes. A negligible reduction of 2% in overall performance during 
testing on external data highlights robust model generalizability across different centers and cancer types, likely attributable 
to its training with resampled inputs. Our model is publicly available, allowing easy multi-site evaluation and generalizability 
analysis on datasets from different institutions.
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Introduction

The predictive potential of total metabolic tumor volume 
(TMTV), quantified through whole-body 2-[18F]-fluorode-
oxyglucose (FDG) positron emission tomography (PET)/
computed tomography (CT) scans, has been extensively val-
idated in the context of lymphoma [1–11]. As such, accurate 
lymphoma segmentation is important for clinical diagnosis 
and treatment planning in Hodgkin and non-Hodgkin lym-
phoma. The Lugano system [12] categorizes lymphoma into 
four stages based on lymph node involvement, but it may not 
fully represent disease burden. Deauville criteria in 2-[18F]
FDG PET/CT is also used for managing lymphoma patients. 
However, variability in the scores may arise due to differ-
ences in quantification reconstruction methods [13, 14]. 
Moreover, despite some quantitative aspects within these 
staging systems (Lugano and Deauville), its significant dis-
cretization might not precisely mirror the complete disease 
burden, unlike the continuous nature of TMTV. Although 
TMTV is a superior proxy for disease burden, providing a 
more precise measure of disease stage over time [15–20], 
yet it is commonly not quantified/reported at all [21, 22] 
since tumor segmentation that is needed for TMTV quanti-
fication is time-consuming and labor-intensive [23].

Segmentation of lymphoma lesions in 2-[18F]FDG PET/
CT scans presents a significant challenge, owing to the 
diverse distribution of lesions and the necessity for precise 
removal of physiological uptake and radiopharmaceuti-
cal clearance in organs like the brain, myocardium, liver, 
brown fat, kidneys, ureters, and bladder [21, 24, 25]. Most 
existing approaches for tumor segmentation in the clinical 
workflows are mainly based on maximum standardized 
uptake value (SUV) thresholding [26]. The tediousness 
of using currently available semi-automatic software and 
inherent variability requiring manual input from readers 
are significant obstacles to the widespread implementation 
of automated lymphoma segmentation in clinical practice.

While TMTV segmentation has been studied to some 
extent, there is still a vast potential for adapting artificial intel-
ligence (AI)-based approaches in this area. Some methods 
have been proposed for lymphoma segmentation, including 
SUV-threshold-based [27], region-growing-based [28], and 
Convolutional Neural Network (CNN)-based methods on 
PET-only and PET/CT images [29, 30]. Although CNN-based 
segmentation methods have been used extensively, the U-Net 
and nnU-Net architecture are the most popular models that 
have been proposed for lymphoma segmentation in recent 
studies [31–33]. AI-based segmentation methods often exhibit 
poor precision when it comes to segmenting small lymphoma 
lesions observed in patients with limited-stage disease and/or 
small lesions [21, 25]. To improve the segmentation perfor-
mance, previously some cascaded AI-based approaches such 

as 2D/3D and 3D/3D models were also applied utilizing a 
sequence of multiple networks that are interconnected in a 
sequential manner. Each network in the cascade processes the 
output of the previous network and refines it further [33, 34].

Despite the acceptable performance of CNN-based 
approaches, there is still a challenge in quantifying prediction 
uncertainty [35] including the uncertainty as a the result of 
the difference between training and testing datasets (domain 
shift) and/or model uncertainty that emerges from the limited 
training dataset and model misspecification. We previously 
suggested a CNN for segmenting whole-body PET/CT images 
across different cancer types using collective deep learning, 
presenting the potential to enable rapid assessment of whole-
body tumor burden in PET/CT images [33]. We showed that the 
segmentation model, trained on diverse whole-body PET/CT 
datasets including primary mediastinal large B cell lymphoma 
(PMBCL), diffuse large B cell lymphoma (DLBCL), and non-
small-cell lung cancer (NSCLC), outperformed models trained 
solely on DLBCL data that could be due to the varied size and 
location of DLBCL lesions. Based on this idea, in this work, 
to address these limitations, a fully automated method for seg-
menting TMTV was developed, utilizing whole-body PET/CT 
scans of lymphoma, lung cancer, and melanoma (from auto-
PET challenge [36]) and were tested extensively on multi-center 
whole-body PET/CT scans of lymphoma patients with different 
lymphoma subtypes and stages.

In this study, we propose a two-step cascaded segmenta-
tion approach to facilitate TMTV quantification and effec-
tively handle the variability in lesion sizes and locations in 
lymphoma cases. Our primary objective is to improve the 
segmentation model generalizability, and our architectural 
choices are primarily designed to optimize it. The first step 
facilitates a comprehensive assessment of global connectiv-
ity, while the second step refines the process for a more intri-
cate and finely detailed segmentation. More specifically, the 
multi-resolution approach, three steps, and ensembling have 
been deliberately made to effectively counter the challenges 
posed by the frequently encountered issue of dataset shift. 
These limitations necessitate a multi-site generalizability of 
deep learning model evaluations. To address these limita-
tions, it becomes crucial to establish multi-site generalizabil-
ity in deep learning model evaluations. To facilitate multi-site 
evaluation of our model, we containerized it and deployed it 
on our in-house developed user-friendly, cloud-based plat-
form, Ascinta, enabling researchers to test our model on their 
datasets and perform generalizability analysis. We are also 
publicly sharing the codes and trained model on GitHub.

To address domain shift, test time augmentation (TTA) 
was proposed wherein the model performance on test exam-
ples is enhanced through various data augmentations and by 
minimizing the average entropy of the model [37]. Recent 
research has illuminated the potential of the test-time aug-
mentation (TTA) to further enhance prediction robustness 
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in critical areas such as image classification [38] and nodule 
detection [39]. In this study, we applied TTA as an addi-
tional step to our cascaded approach and state-of-the-art 
approaches to see if TTA is capable of improving the seg-
mentation model performance on the external multi-site test 
data. For the clinical integration of TMTV-Net, figure of 
merit should be defined properly to quantify task perfor-
mance as the components of claim [40]. Consequently, we 
also considered the bias and noise (i.e., variability) of our 
suggested technique, TMTV-Net in TMTV measurements 
along with DSC as recommended in [40, 41].

Material and methods

Patient population for model development 
and testing

Table  1 provides a comprehensive overview of the data 
employed in this study including the data we used for model 
development and testing and the external multi-site testing. 
We began training by utilizing the autoPET challenge 2022 
dataset [36, 43, 44], which comprises patients diagnosed with 

histologically proven malignant melanoma, lymphoma, or lung 
cancer who underwent 2-[18F]FDG PET/CT examinations at 
two major medical centers: University Hospital in Tubingen, 
Germany. To delineate the dataset, two expert radiologists, 
with 5 and 10 years of experience, respectively, segmented the 
lesions manually on axial slices. In total, the dataset included 
900 cases, with half of the patients serving as negative controls.

To prevent data leakage, the dataset was divided into two 
separate sets (including development (training/validation) 
and test set with data splits of (70/15)/15%) at the patient 
level. Additionally, the development dataset was divided into 
five cross-validation sets, stratified by overall lesion volume, 
i.e., TMTV, to minimize the model variance trained on dif-
ferent splits. Stratification was performed to minimize the 
model variance trained on different data splits. The same 
splits were applied to both our proposed ensemble model 
and state-of-the-art models used for comparison.

Patient population for multi‑site testing

For multi-site testing, we tested the model on data from dif-
ferent centers and lymphoma types. The study was conducted 

Table 1   Details of multi-center PET dataset information from different lymphoma types

PMBCL primary mediastinal large B cell lymphoma, DLBCL diffuse large B cell lymphoma, BCC BC Cancer Canada, SMSK Saint Mary Hospi-
tal in South Korea, UW University of Wisconsin USA, UHTG University Hospital in Tubingen Germany

Data split Center Cancer
type

# of cases Average voxel 
spacing
(mm3)

Average injected 
radioactivity 
(MBq)

Scanner models

Development and 
test

autoPET challenge  
UHTG [36, 
42–44]

Lung cancer 
(n = 168)

Lymphoma 
(n = 145) (no 
specified subtype)

Melanoma (n = 188)

450 2.04 × 2.04 × 3 314.7 ± 22.1 Siemens Biograph 
mCT, mCT Flow

Development and 
test

autoPET challenge  
UHTG [36, 
42–44]

Negative cases 450 2.04 × 2.04 × 3 314.7 ± 22.1 Siemens Biograph 
mCT, mCT Flow

External testing BCC PMBCL 103 4.06 × 4.06 × 2.635 347.5 ± 52.6 GE (Discovery D600 
and D690)

External testing BCC DLBCL
(stage I to II)

86 3.65 × 3.65 × 3.27 335.9 ± 50.8 GE (Discovery D600 
and D690)

External testing BCC Hodgkin lymphoma 30 3.65 × 3.65 × 3.27 363.91 ± 58.2 GE (Discovery D600 
and D690)

External testing SMSK DLBCL
(stages I to IV)

218 3.79 × 3.79 × 4.42 246 ± 47.5 GE (Discovery 710) 
(n = 42)

Siemens (Biograph40 
TruePoint) (n = 176)

External testing UW Classic Hodgkin 
(n = 39)

Nodular lympho-
cyte-predominant 
(n = 1)

DLBCL (n = 41)

81 3.63 × 3.63 × 3.09 472.2 ± 140.3 GE Discovery 710, 
GE Discovery MI, 
GE Discovery IQ
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in accordance with the Declaration of Helsinki (as revised in 
2013). PET/CT images included patients with DLBCL from 
three different centers, BC Cancer Canada (BCC) (ethics 
number: H19-01866), Saint Mary Hospital in South Korea 
(SMSK) (ethics number: KC11EISI0293), and University of 
Wisconsin (UW) (ethics number: UW2016-0418). Patients 
with primary mediastinal large B cell lymphoma (PMBCL) 
were from BCC (ethics number: H19-01611). Patients with 
classic Hodgkin lymphoma were from BCC (ethic number: 
H19-001611) and UW (ethics number: UW2016-0418).

Manual segmentation was performed semi-automatically 
by the nuclear medicine physicians using MIM software. 
Datasets include the PET/CT DICOM series and their corre-
sponding radiotherapy structure (RT-STRUCT) files, which 
should be parsed into arrays of voxel intensities and a binary 
mask that corresponds to a volume of interest (VOI) using a 
previously developed in-house tool [45]. Notably, the ground 
truth labels in UW dataset have 12 categories comprising 
non-equivocal (bone marrow lesion, osseous lesion, liver 
lesion, extra-nodal lesion, splenic lesion, and lymph-nodal 
lesion) and equivocal lesions (bone marrow lesion, osseous 
lesion, liver lesion, extra-nodal lesion, splenic lesion, and 
lymph-nodal lesion). Labels were obtained from a 3-reader 
adjudication process, in which a 2nd reader reviewed and 
edited the primary reader’s annotations, and a 3rd reader 
adjudicated disagreements. We considered the segmentation 
capability of our model on both non-equivocal and equivo-
cal lesions. In the dataset from centers BCC and SMSK, all 
extra-nodal lesions (such as bones and lung lesions) were 
included in the manual segmentation. Although, in PMBCL 
cases, the extra-nodal disease is rare but still the nuclear 
medicine expert considered them. We have no specific infor-
mation about the type and extra-nodal disease of the auto-
PET lymphoma data that was used for training in this study.

The 2-[18F] FDG PET scans exhibited a diverse spectrum 
of normal uptake patterns (as illustrated in Fig. S1). Further-
more, among patients with lesions, a significant variability 
was observed, with some presenting bulky, disseminated 
patterns, while others displayed low uptake patterns. These 
findings underscore the complexity and diversity of 2-[18F] 
FDG uptake patterns both in normal tissues and in lesion 
presentations.

Image preprocessing

First, we resampled the CT images to match the size of 
PET scans. Subsequently, we created five distinct series 
of inputs by combining the PET and CT images. PET 
SUV range was transformed from [0, 30] SUV to [0, 1] 
to capture a broader range of intensities. CT range was 
converted from [− 150, 300] Hounsfield units (HU) to [0, 
1] to capture important patterns. CT Soft1 used [− 100, 
100] HU, focusing on soft-tissue intensities. CT Soft2 used 

[− 1000, − 200] HU, focusing on lung tissue intensities. 
SUV hot used [2, 10] SUV range, aiding in mid-range 
intensity focus for lesions with low uptake. We resam-
pled the PET/CT images into the voxel sizes of [2 mm]3, 
[4 mm]3, [6 mm]3, and [8 mm]3 and a random resampling 
(range = [2, 10] using linear interpolation for images and 
the nearest neighbor for ground truth images).

Data augmentation

We utilized elastic deformations for data augmentation to 
help the model to learn the varied size and shapes of the 
lesions. Also, the following augmentation techniques were 
applied to increase the complexity of the training data: 
random affine transformation includes random rotation 
(< 25°), random axis flip for all three dimensions, elastic 
deformations, and contrast transform; PET-only augmenta-
tion includes the Gamma transforms with γ sampled from 
the uniform distribution (0.8 and 1.2) and random Gauss-
ian blur and brightness transform. We also used MixUp 
[46], a powerful and versatile data augmentation strategy 
that involves creating augmented samples by linearly inter-
polating between pairs of inputs and their corresponding 
labels and it is mainly used in semi-supervised learning.

Two‑stage segmentation approach

Our approach includes two steps and a soft voting interme-
diate step (Fig. 1). To tackle the variation in size, location, 
and appearance of lymphoma, our biphasic methodology 
leverages a spacious receptive field in Step I by applying 
a series of 3D U-Nets to resampled PET/CT scans with 
different resolutions, facilitating coarse-grained analysis 
of global patterns and extensive dependencies. In Step II, 
the cascaded 3D U-Net takes as input the predictions from 
the first step and combines them with randomly resam-
pled PET/CT scans, resulting in a more intricate and finely 
detailed segmentation. We incorporate both PET and CT 
images in our segmentation approach, as PET images are 
prone to blurring the contours of objects due to their low 
resolution and partial volume effect. We used deep super-
vision model to learn features at multiple levels of details 
[47].

Step I: multi-resolution 3D U-Nets. Step I enables a 
broader analysis of global patterns and extensive dependen-
cies, ensuring a coarse-grained analysis achieved through 
a series of 3D models. Random resampling during training 
also enhances the model ability to learn from inputs with 
various resolutions. We assumed that large connectivity 
could be captured while small image details lost in the case 
of resampling at a larger voxel size (e.g., 6 and 8) [48]. In 
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the first step, each of the five resampled datasets was pro-
cessed with a 3D U-Net using a fivefold cross-validation 
(CV). Ensembles of five CV models trained on different data 
splits were generated on each resolution. Consistency in data 
splits was maintained across all resolution models.

Soft voting of multi-resolution predictions. Predicted 
mask of each 3D U-Nets was first resampled to the weighted 
average voxel size [2.65 × 2.65 × 3.23mm]3 based on the 
training dataset. By soft voting (probability averaging) of the 
multi-resolution predictions in this step, we aimed to ensure 
that the majority of outputs have a greater influence on the 
final prediction of Step I. In fact, this averaged prediction is 
used to generate an initial segmentation, which is then used 
to guide the training of a subsequent network in Step II for 
further improvement.

Step II: soft-voting-guided cascaded segmentation. Res-
ampling to the weighted average voxel size was first applied 
to the input PET/CT images. The soft-voted combination of 
the multi-resolution models was concatenated with the resa-
mpled PET/CT input images and fed into another 3D U-Net. 

This approach enabled the network to learn robust features 
and reduce false positives in the segmentation results. In this 
step, the cascaded approach comes into play, utilizing the 
predictions of the first step as well as incorporating informa-
tion from randomly resampled PET/CT scans that lead to a 
finely detailed segmentation.

Segmentation model

We used a modified version of 3D U-Nets that incorporates 
a deep supervision architecture [47]. Deeply supervised 3D 
U-Net uses additional supervision by making predictions at 
intermediate decoder layers as well. These intermediate pre-
dictions are then combined during training to compute the final 
loss, which aids in alleviating the vanishing gradient problem 
and facilitates faster convergence during training. We used 
deep supervision module that applies deep supervision to 
intermediate layers and combines their outputs to compute the 
final loss. We used a semi-supervised loss function (Eq. (1)), 
composed of cross-entropy (CE) and Dice loss as supervised 

Preprocessing Resampling

3D U-Net 3D U-Net 3D U-Net 3D U-Net 3D U-Net

Soft Voting

3D U-Net

Step I:

Multi-scale 

3D U-Nets

Step II: 

Ensemble-Guided Cascaded 

3D U-Net

Resampling

2 4 6 8

Resampling

Fig. 1   Overview of our two-stage cascaded approach for TMTV seg-
mentation, TMTV-Net. In Step I, five resampled datasets were pro-
cessed using the multi-scale 3D U-Net with a fivefold cross-valida-
tion (CV) strategy. The multi-resolution predicted masks of the five 
U-Net models were ensemble to create the segmentation mask first 

for CV and then averaged on predictions from different resolution 
using soft-voting to generate the intermediate mask. In Step II, a cas-
caded soft-voting-guided network approach was employed to further 
enhance segmentation performance
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losses, and an unsupervised boundary-based loss term, namely, 
Mumford-Shah (MS) [49, 50]:

wherein y is the output of the network, g is the ground 
truth, and � is the network parameter [51]. In our previous 
studies [50, 52], we conducted extensive semi-supervised 
training by systematically adjusting α, the weight of the 
Mumford-Shah term, and assessing its impact on the model 
performance. While we observed a significant role for the 
Mumford-Shah term in enhancing overall robustness par-
ticularly with limited datasets, in the current study, our 
model development does not involve scenarios with scarce 
labeled data, and consequently, the weight assigned to this 
term is relatively low. The tuned parameters were � = 10

−5

,� = 1 , and � = 2 . The MS loss function helps the network 
utilize unlabeled images (Eq. (2)) and in the case of labeled 
images, it only needs the input image. In this study we used 
labeled images and in the case of unlabeled images, � and 
� become 0:

where fjk is the softmax output of CNN, while 
∑c

k=1
fjk = 1 

and |||∇fjk
|||
 is the total variant of fjk using the approximation 

(1)
Lsemi−supervised(y, g;�) = �LMS(y;�) + �LDice(y, g;�) + �LCE(y, g;�)

(2)LMS =
�C

k=1

�
jϵΩ

fjk‖yj − vk‖2 + �
�C

k=1

�
jϵΩ

���∇fjk
���

Test time augmentation

TTA involves generating multiple transformed copies of a test 
input and integrating the predictions obtained from these aug-
mented images. By adopting TTA and considering the predic-
tions from augmented images in addition to the “clean” images 
from the testing dataset, a more accurate final prediction can 
be achieved. This process usually involves averaging the pre-
dictions of each image, and it may also incorporate learnable 
weights to form a weighted average, ultimately contributing to 
superior segmentation outcomes and performance evaluation 
for various applications. The schematic of our TTA approach 
is shown in Fig. 2. TTA encompasses four steps: augmenta-
tion, prediction, inverse transform, and aggregation. During 
augmentation, the test image undergoes various transforma-
tions, including random rotation, elastic transform, random 
vertical flip, and Gaussian blur. Subsequently, predictions are 
generated for the original and augmented images, followed 
by an inverse transform to revert the transformations on the 
resulting predictions. Finally, these predictions are merged 
together to produce the final result. To optimize effectiveness, 
we fine-tuned the weights of each augmentation transform, 
seeking the combination that yielded the highest-performance 
enhancement. If Aug is the set of transformations, let x be a 
given input PET/CT dataset and Aug is a candidate subset 
of transformation ( Tri ) that are usually used for augmentation 
( Aug =

{
Tr1, Tr2,… , Trn

}
):

where Θ is the trained model, ytta is the ensemble of the 
outputs after applying the inverse transforms ( Tr−1

i
) , and wi 

are the weight for the inverse transforms to be applied to the 
model prediction.

We devised a strategy for determining the optimal weight 
set of the inverse transform in Eq. (3) through a random 
search. To begin, 1000 weight sets were randomly selected 
and subjected to thorough evaluation using CV. The result-
ing CV scores were then used to rank the weight sets, W  , 

(3)yTTA =
1

n

∑n

i=1
(wi × Tr−1

i
× Θ(Tri(x)))

Trained Model

Test Time 

Augmentation

( )

Final 

Prediction

Weighted 

Aggregation

Test Data

Predictions

Inverse 

Transformations

Center C & D

Center A & B

Fig. 2   Our test time augmentation approach, the model trained on data from center A and B, test data includes data from centers C and D

∇fjk = f(j+1)k − fjk . The average voxel intensity is shown by 
vk here as well. The average voxel intensity is shown by vk 
and C = 2 indicates the number of classes. All models were 
individually trained using the AdamW optimizer, with a 
learning rate of 10−3 , weight decay of 10−6 , and a decayed 
cosine warm restart scheduler with T = 400 epochs and a 
decay rate of 0.9 for each period. To ensure stable training, 
gradient clipping was also employed. Our proposed models 
were trained and validated within the computational environ-
ment of a Microsoft Azure virtual machine with Ubuntu 
20.04.6. This machine consisted of 6 CPU cores (112 GiB 
RAM) and a single NVIDIA Tesla V100 GPUs (16 GiB 
RAM); we used Python 3.9 and Pytorch 1.11.
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and to prevent any potential overfitting to the TTA training 
set, we carefully selected the top W  hyperparameter sets for 
further consideration. For predicting on the TTA test set, we 
constructed an ensemble model that incorporates each yTTA . 
This model randomly selects a weight set from the previ-
ously identified top W  sets, thereby ensuring robustness and 
generalizability in our weight predictions. To fine-tune the 
selection process and identify the most suitable value for 
weights, we conducted an additional round of cross-valida-
tion, allowing us to optimize the performance of finding the 
optimal weights for TTA.

Multi‑center external testing

We aimed to ensure that our models can be easily and repro-
ducibly tested at different sites and evaluated clinically. To 
ensure that the cascaded model can be run as expected on 
different machines and/or sites without loss of performance, 
the model (including the component models) was container-
ized using Docker. All testing was performed with the con-
tainerized version of the model, with all dependencies and 
their versions specified. To ensure that the data is always 
supplied to the model in the correct format, a specialized 
secure DICOM-based API was designed to pass the data 
in and out of the container. The use of the API also allows 
running the containerized model on our in-house developed 
cloud-platform, Ascinta, which can be used for multi-site 
code-free model testing and clinical evaluation by radiolo-
gists. The platform generates lesion segmentation contour 
in the RTSTRUCT format and graphical PDF report with 
maximum intensity projection views along with the visu-
alization of the segmented lesions, TMTV and lesion dis-
semination metric, Dmax, and other metrics. The codes and 
trained model are also available here: https://​github.​com/​
qurit-​frizi/​TMTV-​Net.

Evaluation analyses

To evaluate TMTV-Net on classical Hodgkin lymphoma 
cases (n = 30), in addition to DSC, we conducted a quali-
tative analysis. For comparison to SOTA approaches, we 
considered frameworks based on nnU-Net as deployed by 
Blanc-Durand et al. [31], deep evidential network by Huang 
et al. [53], and Swin UNETR by Hatamizadeh et al. [54] 
trained and tested on same data. We performed an ablation 
analysis on the cascaded segmentation approach to examine 
the key components of our proposed method. Specifically, 
we applied (i) a baseline approach using single-resolution 
3D U-Net and (ii) only the first step (without cascaded 
refinement).

Results

The results of different experiments conducted in this work 
to evaluate TMTV-Net are presented as follows. Firstly, we 
present the findings from the ablation study, demonstrat-
ing the impact of integrating Step I, employing soft vot-
ing, and incorporating Step II for TMTV segmentation and 
quantification. This is followed by an exploration of external 
evaluation on multi-centric datasets and a meticulous assess-
ment of segmentation performance in clinical contexts. Fur-
thermore, we offer a comprehensive comparative analysis 
against state-of-the-art (SOTA) techniques, accompanied by 
an investigation into the influence exerted by the utilization 
of TTA.

Table 2 shows the performance of the models when evalu-
ated on the held-out test split on autoPET dataset through 
segmentation analysis, along with the results of the abla-
tion study. It should be mentioned that the negative cases 
with no segmentation were discarded from the average Dice 
score (DSC) evaluation. As the results shown in Table 2, the 
soft-voted multi-scale and cascaded refinement improved the 
segmentation performance in terms of DSC compared to 
single-scale 3D U-Net.

External validation and clinical evaluation 
of segmentation quality

We evaluated our segmentation model on the external data-
sets from multiple sites that are presented in Table 1 includ-
ing classic Hodgkin, DLBCL (limited stage), and PMBCL 
cases from BCC and DLBCL cases from SMSK; the results 
are presented in Table 3. Some of the segmentation results 
on multi-site external testing datasets are shown in Fig. 3.

Qualitative analysis

Three physicians provided qualitative ratings on 10 cases. 
Physicians 1 and 3 suggested a rating scale of “bad/poor,” 
“average,” and “good,” while physician 2 suggested a rank-
ing based on “incorrect and incomplete” (segmentation of 

Table 2   Segmentation performance of the single-scale, soft-voted 
multi-scale and cascaded approaches on the test set

The negative cases with no segmentation were discarded from the 
average Dice score (DSC) evaluation
The use of “bold” emphasis indicates statistical significance, denoted 
by a p-value<0.001

Approach DSC

Single-scale 3D U-Net 0.59 ± 0.14
Soft-voted multi-scale 0.63 ± 0.18
Cascaded refinement 0.68 ± 0.12

https://github.com/qurit-frizi/TMTV-Net
https://github.com/qurit-frizi/TMTV-Net
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false positives), “incomplete” (missing lesions that affect 
staging), “almost complete” (missing minor lesions that do 
not affect staging), and “complete.” In most cases, quanti-
tative evaluations and clinician feedback were consistent. 
However, there are some deviations between the qualitative 
considerations of physicians. Some of the selected results 
of the visual inspection along with their corresponding Dice 
scores are shown in Fig. 4.

Comparison to state‑of‑the‑art approaches

The results before and after applying TTA are shown, 
respectively, in Tables 3 and 4. We performed a Wilcoxon 
signed-rank test to assess the significance of observed dif-
ferences between our proposed model and state-of-the-art 
approaches. The test yielded p-value < 0.001, indicating 
robust statistical difference.

In Fig. 5(a) and (b), we present a comparison between our 
proposed cascaded 3D U-Net segmentation approach and SOTA 
methods using a DLBCL case from the BCC center. We pro-
vide maximum intensity projection (MIP) coronal and sagittal 
views (Fig. 5(a) and (b)) along with their respective ground truth 
(GT) and segmentation results for improved visual representa-
tion. Figure 5(d) and (e) show the effect of using TTA on the 
segmentation approaches to the same sample PET/CT scan of 
the multi-site external testing dataset. Additionally, the corre-
sponding DSCs are reported in Fig. 5(c) and (f) to quantify the 
performance of the segmentation results.

External testing in UW center

We shared our model to be tested on the DLBCL and Hodg-
kin cases collected from UW hospitals and annotated by 
UW nuclear medicine physicians. The quantitative results 
of our model on this dataset are presented in Table 5. In 
addition, Fig. 6 shows four representative cases, highlighting 
the model capability to segment distributed (Fig. 6(a) and 
(c)) and small (Fig. 6(b) and (d)) lesions. The results on data 
from UW center (Table 5) demonstrated that TMTV-Net is 
capable of segmenting both non-equivocal and equivocal 
lesions with almost the same performance.

TMTV prediction evaluation

In the following series of evaluations, we considered the 
errors in TMTV quantification regardless of the accuracy 
of localization (detection).

Ablation study

The scatter plot of predicted and the ground truth (GT) 
TMTVs (left) and the Bland–Altman plot (right) are 
shown in Fig. 7(a) and (b). To assess the correlation 
between TMTV values, Pearson was used, which showed 
R2 = 0.89 (p < 0.0001). Bland–Altman plot compared the 
predicted and GT TMTV using our suggested approach 
that shows the agreement between two measurements. 
Correlation and Bland–Altman analysis of using only 
the Step I are shown in Fig. 7(c) and (d). Correlation 
is reduced from 0.89 to 0.83 (p < 0.001), and the agree-
ment based on Bland–Altman analysis occurred in a 
wider range between the measurements compared to the 
cascaded two-step approach.

Quantitative analysis of TMTV on multi‑site external 
testing

The relative volume error of TMTV calculation based on 
different centers and different lymphoma types are shown 
in Fig. 8(a) and (b). The absolute error distribution and the 
relative error distribution as a function of total tumor volume 
ranges are shown in Fig. 8(c) and (d).

The predicted versus ground truth TMTV and the dis-
tribution of the estimated and real volumes are shown in 
Fig. S2. Performances for different centers are also shown in 
Fig. S3. Breakdowns of values are also shown in Table S1. 
The mean absolute error increased from 8.9 to 504.8 mL in 
the 5 volume bins, while mean relative errors decreased from 
59 to 33%, with an overall uncertainly of 42%. Overally our 
external testing results showed that TMTV-Net worked well 
on a diverse dataset which is not expected from the existing 
segmentation networks for tumoral leasion of PET/CT scans 
in lymphoma cases.

Table 3   Comparison to state-of-the-art (SOTA) approaches with our model on multi-site testing data (overall performance of our cascaded 
approach is Dice score (DSC) = 0.66 ± 0.18)

The use of “bold” emphasis indicates statistical significance, denoted by a p-value<0.001

Study Model DSC on DLBCL cases 
from center SMSK

DSC on PMBCL 
cases from BCC

DSC on DLBCL 
cases from BCC

DSC on Hodg-
kin from BCC

Blanc-Durand et al. [31] nnU-Net 0.61 ± 0.2 0.47 ± 0.25 0.58 ± 0.32 0.59 ± 0.18
Huang et al. [53] Deep evidential network 0.57 ± 0.23 0.53 ± 0.33 0.48 ± 0.37 0.56 ± 0.17
Hatamizadeh et al. [54] Swin UNETR 0.53 ± 0.25 0.51 ± 0.25 0.59 ± 0.30 0.45 ± 0.18
Our study TMTV-Net 0.70 ± 0.13 0.62 ± 0.15 0.67 ± 0.27 0.63 ± 0.17
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Fig. 3   Sample results on the 
unseen test set (a) and on the 
multi-site external testing 
(b–d). We also included two of 
our poor results (e and f). The 
red arrows show the different 
segmented regions with respect 
to the ground truths provided by 
nuclear medicine physicians

PET Coronal MIP Predicted GT PET Sagittal MIP Predicted GT

Test data, Lymphoma, autoPET, Dice=0.74

Multi-site external testing, DLBCL, SMSK, Dice=0.65

(a)

(b)

Multi-site external testing, DLBCL, SMSK, Dice=0.86

Multi-site external testing, DLBCL, SMSK, Dice=0.68

(c)

(d)

Multi-site external testing, DLBCL, SMSK, Dice=0.31

Multi-site external testing, DLBCL, BCC, Dice=0.09

(f)

(e)
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Discussion 

Segmentation of lymphoma lesions poses a challenge for 
AI-based methods due to the wide range of lesion sizes 
and sites and the need to accurately exclude physiologi-
cal uptake and radiopharmaceutical clearance in vari-
ous organs, resulting in lower performance compared to 
segmentation of primary tumors in 2-[18F]FDG PET/CT 
scans of various cancers [21, 25]. This is primarily due 
to the high variability in the distribution of lesions, as 
well as the need to account for physiological uptake (such 
as in the brain, myocardium, liver, and brown fat) and 
radiopharmaceutical clearance (such as in the kidneys, 
ureters, and bladder), which must be accurately trimmed 

to ensure precise segmentation (Fig. S1). To overcome 
this limitation, we suggested TMTV-Net, a comprehensive 
and fully automated approach for accurately segmenting 
tumoral lesions in lung cancer and melanoma, as well as 
lymphoma lesions. As PET/CT data from diverse cancers 
gain prominence, a promising opportunity emerges to train 
a single neural network capable of accurately quantifying 
tumor burden from various malignancies. By encompass-
ing diverse types of cancer, including lung cancer, and 
melanoma, we aimed to improve the versatility and gen-
eralizability of our approach.

For model training, harmonization techniques were 
unnecessary for the mono-centric training data. However, 
for evaluating our segmentation model on an unseen external 

Fig. 4   Qualitative analysis (visual inspection) by three nuclear medi-
cine physicians on the external Hodgkin cases from BCC. Maximum 
intensity projections are shown. The corresponding ground truth 

delineated by nuclear medicine physician (NM physician G. T.) and 
the TMTV-Net results are overlaid

Table 4   Comparison of applying test time augmentation (TTA) to state-of-the-art (SOTA) approaches with our model on multi-site testing data 
(overall performance of our cascaded approach on external multi-site testing Dice score (DSC = 0.66 ± 0.16))

The use of “bold” emphasis indicates statistical significance, denoted by a p-value<0.001

Study Model DSC on DLBCL cases 
from center SMSK

DSC on PMBCL 
cases from BCC

DSC on DLBCL 
cases from BCC

DSC on Hodg-
kin from BCC

Blanc-Durand et al. [31] nnU-Net 0.61 ± 0.2 0.49 ± 0.23 0.62 ± 0.30 0.60 ± 0.22
Huang et al. [53] Deep evidential network 0.57 ± 0.22 0.54 ± 0.28 0.49 ± 0.37 0.56 ± 0.17
Hatamizadeh et al. [54] Swin UNETR 0.53 ± 0.23 0.54 ± 0.23 0.62 ± 0.30 0.47 ± 0.16
Our study TMTV-Net 0.71 ± 0.13 0.62 ± 0.15 0.67 ± 0.27 0.63 ± 0.09
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testing set, we used data from three distinct centers and 
acquired through six different scanners. This external test-
ing dataset comprises instances of three lymphoma types at 
various stages as imaged using different scanners. Our study 
specifically aimed to assess how this diversity affects the 
model performance. In essence, one of the primary goals of 

this study is to assess the generalizability of our model under 
these diverse conditions.

To validate the effectiveness of our method, rigorous 
testing has been conducted on multi-center whole-body 
PET/CT scans of lymphoma patients. By encompassing 
data from diverse centers and lymphoma subtypes in our 
evaluation, we have ensured the robustness and general-
izability of our approach (dataset description in Table 1 
and sample results in Fig. 3). The overall performance 
of TMTV-Net on the multi-site external datasets is DSC: 
0.66 ± 0.16 with TTA (0.66 ± 0.18 without TTA) which 
has a performance drop of 2% compared to the test set 
on autoPET dataset (0.68 ± 0.12). The resulted generaliz-
ability of our approach compared to the usual amount of 
expected performance drop for external testing in other 

PET Coronal MIP GT

Dice= 0.33

(a)

PET Sagittal MIP

(b)

GT

Deep evidential network

Deep evidential network

Dice= 0.67

nnU-Net

nnU-Net

Dice= 0.66

Swin UNETR

Swin UNETR

Dice= 0.81

Cascaded 3D U-Nets

Cascaded 3D U-Nets

(c)

PET Coronal MIP GT

Dice= 0.33

(d)

PET Sagittal MIP

(e)

GT

Deep evidential network +TTA

Dice= 0.72

nnU-Net + TTA

Dice=0.71

Swin UNETR + TTA

Dice= 0.81

Cascaded 3D U-Nets + TTA

(f)

Fig. 5   Comparison of our suggested 3D segmentation approach 
to SOTA approaches on a DLBCL case from the BCC center. MIP 
views (a and b) and the corresponding GTs and the segmentations 
results are shown for better visualization. Comparison the effect of 

TTA on the segmentation performance of our suggested 3D segmen-
tation approach and the SOTA approaches on a DLBCL case from the 
BCC center (d and e). The corresponding Dice scores are shown (c 
and f). GT: ground truth, MIP: maximum intensity projections

Table 5   Performance evaluation of TMTV-Net in UW center on lym-
phoma data (Hodgkin and DLBCL)

Ground truth category DSC Precision Recall

Non-equivocal lesions 0.694 ± 0.18 0.76 ± 0.15 0.71 ± 0.25
Equivocal and non-

equivocal lesions
0.687 ± 0.19 0.76 ± 0.14 0.69 ± 0.25



	 European Journal of Nuclear Medicine and Molecular Imaging

studies which is around 10 percent underscores the robust-
ness and reliability of our model to generalize effectively. 
The higher performance of the model on data from SMSK 
data is also notable. The results obtained from the UW 
center data (Table 5 and Fig. 6) underscore the capabil-
ity of TMTV-Net in segmenting both non-equivocal and 
equivocal lesions, demonstrating nearly equivalent per-
formance for both categories. Besides, in the external 
testing dataset, experts from different centers and cohorts 
additionally segmented extra-nodal disease. Our results on 
the external dataset revealed the ability of TMTV-Net to 
perform accurate segmentations.

Deep learning-based methods can handle variations in 
image appearance if the training dataset covers these vari-
ations adequately, but the resource-intensive demands of 

including such cases might be prohibitive [55]. Training the 
model with resampled inputs makes it more robust to resolu-
tion variations and reduces overfitting to a particular resolu-
tion, thereby improving its generalizability to new data. Our 
cascaded approach can be easily incorporated into various 
models and extended to address different segmentation tasks 
that may be affected by domain shifts or limited labeling 
resources in a plug-and-play fashion.

To validate the necessity of using both steps in our cas-
caded segmentation approach, we conducted an ablation 
analysis to investigate its key components. We compared two 
setups: a baseline approach using a single-scale 3D U-Net 
and the first step alone (without cascaded refinement). Our 
findings, as illustrated in Fig. 7(c) and (d), demonstrate that 
employing only the first step resulted in reduced correlation 

Fig. 6   The example results of 
the segmented TMTV on data 
from UW center. a Hodgkin 
case, DSC = 0.83, TMTV 
relative error = 0.18. b DLBCL 
case, DSC = 0.66, TMTV rela-
tive error = 0.10. c Hodgkins 
case, DSC = 0.76. d DLBCL, 
DSC = 0.67
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(from 0.89 to 0.83) and a wider range of agreement based on 
Bland–Altman analysis compared to the cascaded approach. 
It should be noted that the correlation values in the data from 
all the external test dataset are higher than 0.89 (Fig. S2). 
Additionally, the results presented in Table 2 indicate that 
the soft-voted multi-scale and cascaded refinement led to 
improved segmentation performance in terms of DSC com-
pared to the single-scale 3D U-Net on test data.

Comparisons to SOTA methods trained, validated, and 
tested on the same datasets showed that our suggested cas-
caded 3D U-Nets had better performance compared to deep 
evidential network, nn-U-Net and SWIN UNETR. We also 
considered the effect of TTA on the segmentation perfor-
mance of tour approach and the SOTA method. Basically our 
primary assumption was to expect the same effect of TTA 

of the performance of our model and SOTA techniques but 
our results showed that TTA worked better for nn-U-Net and 
SWIN UNETR (Table 4); for example, in the sample PET/
CT scan in Fig. 5(d) and (e), TTA helped to decrease false 
positive rate by removing the regions that were erroneously 
included in the segmented volume but it could not improve 
our model performance significantly.

External testing was performed on a real-world dataset with 
ground truth manually segmented through a decentralized 
process, reflecting the challenges of intra- and inter-observer 
variabilities in ground truth generation. Our evaluation on this 
decentralized dataset demonstrated the effective performance of 
TMTV-Net. We evaluated our segmentation approach on 518 
scans from different centers and lymphoma subtypes; for further 
generalizability evaluation we need more dataset from different 
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Fig. 7   Regression analysis (correlation) (p < 0.0001) (a) and Bland–
Altman (b) plots of the correlations between ground truth and pre-
dicted TMTVs in the “unseen” test data, including negative cases 
with TMTV = 0 mL. Results from Step I, excluding the soft voting-
guided Step II, revealed a lower correlation compared to the cascade 

approach in predicting TMTVs in the “unseen” test data with nega-
tive cases as TMTV = 0 mL. Specifically, a lower correlation of 0.83 
(p < 0.0001) was obtained (c) and the Bland–Altman plot (d) showed 
agreement across only a broader range of measurements compared to 
using cascaded two-step approach
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centers. Utilizing optimal approaches in model development 
involves the inclusion of multiple radiologists for annotating 
training datasets and assessing segmentation. Additionally, it is 
advisable to explore algorithms that exhibit data efficiency and 
the capability to incorporate unlabeled data for semi-supervised 
learning, considering the limited availability of experts for data 
labeling and annotation [56, 57]. Our multi-site external test-
ing was performed on data for which ground truth segmenta-
tions were prepared by nuclear medicine physicians utilizing 
a previously validated [58] approach, PET-Edge, to define the 
ground truth for segmentation. An alternative and more accurate 
approach involves obtaining multiple manual delineations by 
expert clinicians and generating a statistical consensus using 
majority voting methods such as STAPLE [59]. This provides 
a more reliable ground truth for training our proposed model. 
However, such an approach requires considerable time and 

expertise, making it less practical, especially in large-scale stud-
ies or resource-limited settings [60, 61]. Moreover, imprecise 
ground truths can lead to reduced precision at the edges of pre-
dicted masks. In this study, our objective was to create a model 
with sufficient generalizability to maintain consistent segmen-
tation performance across diverse centers, varying lymphoma 
lesion sizes, and inconsistent ground truth data. To address this 
issue, we additionally integrated the Mumford-Shah loss in our 
model as an unsupervised term, aiming to alleviate inconsisten-
cies introduced by diverse edge refinement techniques employed 
in manual segmentation tools across different expert users.

Detection rate and recall or sensitivity could be used for 
evaluating the suggested approach to detect a lesion even 
by one voxel; the average detection rate for our model on 
the entire external test datasets is 0.68 ± 0.19. The aver-
age relative error (ARE) and the absolute error (AE) in 

Fig. 8   Relative TMTV error (a) by center and (b) by lymphoma type. 
Also shown are plots of absolute error (c) and relative error (d) for 
5 different tumor volume bins. Relative error is defined as absolute 
error between total tumor volumes calculated via TMTV-Net vs. 

ground truth, normalized by ground truth. UW, SK, and BCC are 
three different centers in this study. PMBCL: primary mediastinal B 
cell lymphoma, DLBCL: diffuse large B cell lymphoma
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TMTV prediction on external multi-centric dataset were 
ARE = 0.43 ± 0.54 and AE = 157.32 ± 378.12 (mL) for all 
the external test data (n = 518) and ARE = 0.30 ± 0.22 and 
AE = 82.052 ± 99.778 (mL) when the 10% outliers (n = 53) 
were excluded that were mostly from the cases with high 
TMTV values. The model developed in this work and the 
necessary pre-processing steps are publicly available for 
multi-site testing and clinical evaluation.

TMTV-Net represents a pivotal advancement in the field of 
tumor segmentation using 2-[18F] FDG PET/CT scans, offering 
a unique set of capabilities that contribute to superior generaliz-
ability when compared to existing approaches. Its integration 
of deep supervision within the framework of 3D U-Nets, cou-
pled with the implementation of multi-resolution techniques, 
plays a pivotal role in mitigating the challenges posed by dataset 
shift. This strategic combination not only enhances the precision 
of tumor segmentation but also ensures the model reliability 
across diverse datasets. Future work includes the development 
of a user interface for active learning, which will allow physi-
cians to be more involved in our segmentation framework. In 
addition, we are investigating the addition of a convolutional 
layer to automatically learn the best possible combination of 
multiple-resolution models.

Conclusion

We have introduced and validated TMTV-Net, a fully automated 
segmentation network for lymphoma PET/CT images using a 
cascaded framework. The proposed cascaded segmentation 
model trained on the PET/CT images of lung cancer, lymphoma, 
and melanoma patients achieved good performance for TMTV 
segmentation on data from multi-site external dataset with dif-
ferent lymphomas including DLBCL, PMBCL, and Hodgkin. 
The small 2% drop in the overall performance on the external 
testing data demonstrates the effectiveness of our suggested 
approach to be generalized well on unseen data from differ-
ent centers. Training the model with resampled inputs makes 
it more robust to resolution variations and reduces overfitting 
to a particular resolution. Our cascaded approach can be easily 
incorporated into various models and extended to address dif-
ferent segmentation tasks that may be affected by domain shifts 
or limited labeling resources in a plug-and-play fashion. The 
model developed in this work and the necessary pre-processing 
steps are made available for multi-site testing and clinical evalu-
ation through a cloud-based platform, which is user-friendly and 
requires no coding. Future work also includes implementing a 
user interface for an active learning approach to add the physi-
cian-in-the-loop option to our segmentation framework.
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