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Abstract

Aims: We aimed to build radiomic models for classifying non-small cell lung cancer (NSCLC) histopathological subtypes through a dual-centre dataset and
comprehensively evaluate the effect of ComBat harmonisation on the performance of single- and multimodality radiomic models.
Materials and methods: A public dataset of NSCLC patients from two independent centres was used. Two image fusion methods, namely guided filtering-based
fusion and image fusion based on visual saliency map and weighted least square optimisation, were used. Radiomic features were extracted from each scan,
including first-order, texture and moment-invariant features. Subsequently, ComBat harmonisation was applied to the extracted features from computed to-
mography (CT), positron emission tomography (PET) and fused images to correct the centre effect. For feature selection, least absolute shrinkage and selection
operator (Lasso) and recursive feature elimination (RFE) were investigated. For machine learning, logistic regression (LR), support vector machine (SVM) and
AdaBoost were evaluated for classifying NSCLC subtypes. Training and evaluation of the models were carried out in a robust framework to offset plausible errors
and performance was reported using area under the curve, balanced accuracy, sensitivity and specificity before and after harmonisation. N-way ANOVA was
used to assess the effect of different factors on the performance of the models.
Results: Support vector machine fed with selected features by recursive feature elimination from a harmonised PET feature set achieved the highest perfor-
mance (area under the curve ¼ 0.82) in classifying NSCLC histopathological subtypes. Although the performance of the models did not significantly improve for
CT images after harmonisation, the performance of PET and guided filtering-based fusion feature signatures significantly improved for almost all models.
Although the selection of the image modality and feature selection methods was effective on the performance of the model (ANOVA P-values <0.001), machine
learning and harmonisation did not change the performance significantly (ANOVA P-values ¼ 0.839 and 0.292, respectively).
Conclusion: This study confirmed the potential of radiomic analysis on PET, CT and hybrid images for histopathological classification of NSCLC subtypes.
� 2023 Published by Elsevier Ltd on behalf of The Royal College of Radiologists.
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Introduction

Lung cancer is the second most frequently diagnosed
cancer and the leading cause of cancer death in both men
and women. It accounts for about one-quarter of all cancer
deaths; for all stages combined, the 5-year relative survival
rate has a dismal value of 19% [1]. Lung cancer is broadly
adiologists.
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classified into two types: small cell lung cancer (15% of all
cases) and non-small cell lung cancer (NSCLC, 85% of all
cases) [2]. Adenocarcinoma (ADC) and squamous cell car-
cinoma (SCC) are the most prevalent subtypes of NSCLC,
accounting for about 40% and 25e30% of all lung cancer
cases, respectively [3]. Lung ADC and SCC are different in
origin, tissue and genetic characteristics, and anatomical
site. Whereas ADC tends to occur along the outer periphery
of the lung, SCC is often centrally located and considered
more aggressive than ADC [4,5]. More importantly, these
two subtypes are also different in prognosis and treatment
outcome, thus requiring different therapeutic regimens
[3,6,7]. For instance, pemetrexed as well as bevacizumab
have superior efficacy in non-SCC compared with SCC his-
tology [6]. Therefore, it is crucial to accurately distinguish
and confirm histopathological subtypes of NSCLC prior to
treatment decisions.

In the clinical setting, histopathological examination is
the first-line method for discriminating lung ADC and SCC.
However, this method comes with a few challenges. First,
this method is invasive and requires needle biopsy or sur-
gery [8]. Second, the biopsies are often taken from a limited
region of the tumour, which cannot be a wholesome repre-
sentative of tumour characterisation. Above the mentioned
limitations, a biopsy is not recommended for certainpatients
with advanced inoperable stages [9]. Therefore, it is imper-
ative to develop an accurate and objective approach to
classify NSCLC subtypes as an adjunct to pathology.

During the past decade, radiomics has been increasingly
gaining popularity among researchers towards developing a
reliable and non-invasive approach for improving diagnosis
[10], prognosis [11e13] and treatment response prediction
[14,15]. Several studies investigated the potential of radio-
mics for the classification of NSCLC histopathological sub-
types and reported promising results [16e20]. However, one
of the severe limitations of radiomics is the lack of repro-
ducibility and generalisability of radiomic models, which
decelerates the translation of this approach into clinical
practice. Several studies have shown that the robustness of
radiomic features is influenced by the ‘batch effect’ [21,22].
The batch effect can be defined as the cumulative errors
unrelated to the biological variations introduced by centre,
vendor, time and/or acquisition protocol of the experiment
[23,24]. It has been shown that the batch effect in imaging
procedures can affect radiomic values [25,26]. This issue
hinders the pooling of data from different centres into sta-
tistical analysis and building robust models. Consequently,
most of the conducted radiomic studies are based on single-
centre datasets. However, toprove the potential of radiomics
as a predictive or diagnostic tool in the clinic, conducting
multicentric studies is of great significance.

According to a review by Da-Ano et al. [27], ComBat
harmonisation, a harmonisation method in the feature
space, has recently gained attention in the field of radiomics
to correct for the ‘batch effect’. Chen et al. [24] compared six
different harmonisation methods to eliminate the batch
effect from expressionmicroarray data. Their study not only
reported the superiority of ComBat over other methods but
also confirmed its robustness in handling high-dimensional
data from small sample sizes. Hence, various radiomic
studies used ComBat to correct for batch effects arising from
differences in acquisition parameters [28], imaging pro-
tocols [29] and centre and/or vendor [30e34].

All of the above studies reported the potential of ComBat
in pooling different datasets. However, most of the con-
ducted radiomic studies that implemented ComBat har-
monisation were based on single-modality datasets. Each
imaging modality characterises tumour heterogeneity from
a particular perspective. For example, in computed tomog-
raphy (CT) imaging, Hounsfield units are associated with
the attenuation of the X-ray beam in different tissues. Thus,
heterogeneities on CT images potentially depict the
anatomical aspects of lesions, such as hypoxia and/or
angiogenesis [35]. On the other hand, positron emission
tomography (PET) images represent radiotracer uptake in
organs that is related to biological processes, such as vari-
ation in glucose metabolism, cellular proliferation and/or
necrosis [36]. Hence, integrating different imaging modal-
ities can provide complementary information and improve
the accuracy of models [37e40].

In the present study, we aimed to build radiomic models
for classifying NSCLC subtypes using a dual-centre dataset
and comprehensively evaluate the effect of ComBat har-
monisation on the performance of single- and multi-
modality radiomic models. The significance of our study is
linked to the fact that we simultaneously investigated the
effect of ComBat harmonisation on the extracted features
from anatomical (CT), functional (PET) and fused images.
We hypothesised that ComBat harmonisation could
improve the predictive power of models by eliminating the
centre effect.
Materials and Methods

Figure 1 presents a comprehensive summary of the
different steps followed in the current study.

Datasets

This study was conducted on a dual-centre dataset con-
sisting of 211 histologically proven NSCLC patients from The
Cancer Imaging Archive (TCIA) [41,42]. Prior to surgical
treatment, 201 patients underwent 18F-FDG PET/CT scans.
From the 201 patients with PET/CT data, 23 were excluded
due to the absence of histological data, high levels of noise or
the presence of artifacts in images (based on visual evalua-
tion). Eventually, 94 patients from centre #1 (85 ADC and 9
SCC) and 84 patients from centre #2 (62 ADC and 22 SCC)
were enrolled in the study. Table 1 summarises the imaging
specifics of our data separately for the two datasets.

Image Processing

To comprehensively assess the effect of ComBat harmo-
nisation on the performance of radiomic models, we



Fig 1. Flowchart summarising the main steps followed in this study protocol.
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developed four different single- and multimodality models,
including: (i) a model based on anatomical information of
the lesion (CT), (ii) a model based on functional information
of the lesion (PET) and (iii, iv) two anato-functional models
(PET/CT image fusion) integrating anatomical and func-
tional aspects of the tumour into a single image.

Lesion segmentation of PET and CT images was previ-
ously carried out on this dataset [39,40]. The segmentation
procedure was supervised by a proficient radiologist. To
obtain a single region of interest (ROI) for all four models
and to reduce potential segmentation errors, a single mask
was generated by integrating PET and CT masks (each voxel
in the merged mask is 1 if related voxels in CT or PET masks
are 1) and applied on all models.

Also, PET and CT images were registered in previous
studies [39,40]. The images were interpolated to 2 � 2 � 2
mm3 isotropic voxel spacing, utilising cubic interpolation
equipped with an anti-aliasing kernel. This resolution was
set as the reference to avoid over manipulation of intensity
values simultaneously on both PET and CT scans (PET im-
ages were up-sampled and CT images were down-sampled
to this resolution).

Image Fusion
For PET and CT image fusion, two publicly available im-

age fusion methods, namely guided filtering-based fusion
(GFF; https://github.com/funboarder13920/image-fusion-
guidedfiltering) and image fusion based on visual saliency
map andweighted least square (WLS) optimisation (https://
github.com/JinleiMa/Image-fusion-with-VSM-and-WLS)
were used. Prior to fusion, intensity values on PET (stand-
ardised uptake value; SUV) and CT (Hounsfield units) im-
ages were rescaled and clipped. SUV values were divided by
the SUVmax of thewhole dataset (normalised between 0 and
1) and Hounsfield units were first clipped between e1024
and 450 (typical range in the chest area), then normalised
between 0 and 1.

The GFF method [43] was used in our previous study and
can be referred to for more details. In the WLS method [44],
the input images are first decomposed to base and detailed
Table 1
Imaging specifics of the dataset, separately for centres #1 and #2

Modality Acquisition parameter

CT Tube voltage [kVp] (minimum, maximum, average)
Tube current [mA] (minimum, maximum, average)
Matrix size
Slice thickness (minimum, maximum, average)
Pixel spacing (minimum, maximum, average)

PET Reconstruction method
Injected activity (minimum, maximum, average)
Uptake time (minimum, maximum, average)
Matrix size

Slice thickness (minimum, maximum, average)
Pixel spacing (minimum, maximum, average)

Vendor

CT, computed tomography; CTAC, computed tomography-based attenu
PET, positron emission tomography.
layers, with an unseen multi-scale decomposition method,
using the rolling guidance filter and Gaussian filter. This
unique multi-scale decomposition preserves the informa-
tion of specific scales and reduces the halos near the edges.
Afterwards, the base layers are fused using an improved
visual saliency map-based technique, and the detailed
layers are fused by a novelWLS optimisation scheme, which
translates more details and less noise into the fused image.
In this study, we adopted the default parameters of WLS
optimisation fusion used in [44]. All image processing and
image fusions were performed in Matlab� 2020a.

Feature Extraction

Isotropic voxel spacing is required to obtain rotationally
invariant texture features. The fused images already had
isotropic voxel spacing of 2 � 2 � 2 mm3 and CT and PET
volumes were interpolated to the same size prior to feature
extraction. In order to have a tractable feature calculation,
the intensities inside the ROI of images were quantised into
64 discretised grey levels. For feature extraction, we used a
MATLAB�-based package known as Standardized Environ-
ment for Radiomics Analysis (SERA; https://github.com/
ashrafinia/SERA) [45]. This framework is compliant with
the guidelines of the Image Biomarker Standardization
Initiative (IBSI) [26,46] and was assessed in a multicentre
standardisation studies framework [46,47] for enhanced
features reproducibility. Using SERA, we extracted 221 fea-
tures, including 76 first-order (morphological, statistical,
histogram and intensity-histogram) features, 135 three-
dimensional texture features (extracted from matrices,
including: GLCM, GLRLM, GLSZM, GLDZM, NGTDM, NGLDM)
and 10 moment-invariant features. Supplementary Table S1
lists the extracted features.

Image Harmonisation Using ComBat

We applied ComBat harmonisation to the features
extracted from CT, PET and fused images. ComBat harmo-
nisation was first introduced in genomics by Johnson et al.
Centre #1 Centre #2

(110, 140, 134) (120, 140, 121)
(10, 497, 96) (30, 340, 112)
(512 � 512) (512 � 512)
(3, 5, 4.15) (3.75, 3.75, 3.75)
(0.88, 1.37, 1.01) (0.97, 1.37, 0.99)
OSEM, CTAC OSEM, CTAC
[304, 672, 442) (304, 673, 501)
(30,109,69) (44,147,78)
(128 � 128,144 � 144,
168 � 168,192 � 192)

(128 � 128,192 � 192)

(3.27,5,3.92) (3.27,3.27,3.27)
(3.65,5.47,3.92) (3.65,5.47,4.77)
GE Discovery D690 PET/CT Discovery PET/CT

ation correction; OSEM, ordered subsets expectation maximisation;

https://github.com/funboarder13920/image-fusion-guidedfiltering
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[48] to deal with the batch effect. The centre effect in
radiomics is similar to the batch effect in genomics. ComBat
harmonisation falls into the category of location-scale
methods, which transfer the data so that the batches have
similar mean and/or variance for each variable [27].

In the ComBat method, the value of each feature Y from
ROI j and centre i can be estimated by the following
equation:

Yij ¼ aþ Xijbþ gi þ diεij (1)

where a is the average value of feature Y, Xij is the design
matrix of the covariates of interest, b is the regression co-
efficient corresponding to each covariate, gi and di are ad-
ditive and multiplicative effects of scanner j supposed to
follow normal and inverse gamma distributions, respec-
tively, and εij is the error term assumed to have a normal
distribution with zero mean. By estimating additive and
multiplicative batch effects using empiric Bayes estimates
(denoted as g*

i and d*i ), the normalised value of feature Y for
ROI j and scanner i can be found using the following
equation:

YComBat
ij ¼ Yij � ba � Xij

bb � g*
i

d*i
þ ba þ Xij

bb (2)

In this equation, ba and bb are estimates of parameters a and
b. Apart from using empirical Bayes estimates, the param-
eter estimates can be derived using the non-parametric
form of the model in which no assumption is taken
regarding gi; di, and εij. In this work, we applied harmo-
nisation to all features using the code developed by Fortin
et al. [49,50]. In this study, the batches were defined as the
centre (two centres used different imaging vendors) and
ComBat was applied on the whole dataset before splitting it
into train/validation and test cohorts.

Univariate Analysis

A univariate analysis was carried out to investigate the
significance of each extracted radiomic feature. To this end,
all features were first normalised using Z-score normal-
isation. Then, student’s t-test was carried out to compare
the average value of each feature in the SCC group with its
average in ADC group. Bonferonni correction was applied to
P-values and a value of 2.2e-4 was considered as the
threshold for statistical significance. In addition, to analyse
and compare the predictive power of the features, the area
under the curve (AUC) was calculated for each feature. The
statistical analyses were carried out in Python 3.9.

Multivariate Analysis

Feature Selection
Feature selection is one of the crucial steps in the

radiomic workflow, as there are usually correlated radiomic
features that increase the computational time and reduce
the model’s accuracy. Also, a higher number of features in
comparisonwith the number of samples would increase the
probability of overfitting. Therefore, to select the most
informative radiomic features and address the dimension-
ality problem, we implemented two different feature se-
lection algorithms, including the least absolute shrinkage
and selection operator (Lasso) and recursive feature elimi-
nation (RFE). Lasso is a popular embedded feature selection
method that includes an L1 regularisation term. This
method penalises the coefficients of the regression vari-
ables and shrinks the coefficients of less informative vari-
ables to zero. After the regularisation process, the retained
variables with non-zero coefficients can be fed into the
model [51]. RFE is an effective wrapper-based feature se-
lection method. The core of this method is a machine
learning algorithm that selects features in a backwards
manner. It begins with fitting the algorithm to the entire
features, computing the importance score for each feature
and removing less important features. Then the model is
refitted to the subset of retained features and the process is
repeated until a specified number of features remains [52].

Classification
In this study, the performance of three classifiers,

including logistic regression (LR), support vector machine
(SVM) and AdaBoost were evaluated. LR is one of the basic
linear machine learning models that is relatively fast and
uncomplicated. For input x, LR estimates probability
pðy ¼ 1jxÞ using a sigmoid function. SVM is one of the most
popular machine learning algorithms. This algorithm sep-
arates the classes using a decision boundary called a hy-
perplane. The optimal hyperplane has the largest distance
from the closest data points (support vectors) from each
class. One of the advantages of SVM is that in the case of
complex and non-linear data, this algorithm can achieve
high performance using kernel functions [53]. In our study,
SVM was implemented with sigmoid and linear kernels for
features selected by Lasso and RFE, respectively. AdaBoost is
one of the promising ensemble learning algorithms, which
aims to create a strong classifier based on weak learners
using an iterative approach. In this method, the models are
generated sequentially, and each model attempts to correct
the error from the previous model [54]. In this study, we
used LR as the base learner for AdaBoost.

Model evaluation was carried out by randomly sampling
data into training (70% of data, 124 patients) and testing sets
(30% of data, 54 patients). The different steps of model
evaluation are summarised in Figure 2. To determine the
optimal hyperparameters for eachmodel, a grid searchwith
10-fold cross-validation was implemented and the process
was repeated 20 times to obtain stable results. The optimal
models were selected based on the highest AUC. Then the
performance of optimal models was evaluated on the test
set and the AUC, balanced accuracy, sensitivity and speci-
ficity were calculated. The entire process was repeated 100
times and, finally, the mean, standard deviation and 95%
confidence interval for AUC, accuracy, sensitivity and
specificity were reported before and after harmonisation. To



Fig 2. Simplistic flowchart of the multivariate analysis process adopted in this study.

Table 2
Top 10 radiomic features based on univariate analysis of the original
data

Feature Category AUC P-value

cm_joint_var_3D_comb PET 0.771 5.10E-5
cm_joint_var_3D_avg PET 0.770 1.92E-4
cm_sum_var_3D_comb PET 0.766 1.92E-4
cm_clust_tend_3D_comb PET 0.766 1.92E-4
cm_clust_tend_3D_avg PET 0.765 1.99E-4
cm_sum_var_3D_avg PET 0.765 1.99E-4
ngl_gl_var_3D PET 0.765 3.42E-4
rlm_gl_var_3D_comb PET 0.764 2.48E-4
rlm_gl_var_3D_avg PET 0.764 2.49E-4
cm_clust_prom_3D_comb PET 0.754 5.33E-5
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evaluate the effect of harmonisation on the predictive po-
wer of the model, the Wilcoxon signed rank test with alpha
¼ 0.05 was implemented. All statistical analyses were car-
ried out using Python 3.9.

The performance of the models in this study was deter-
mined by the selection of four factors. These factors were as
follow: (i) radiomics model (PET, CT, GFF, WLS), (ii) feature
selection method (Lasso, RFE), (iii) machine learning
method (AdaBoost, SVM, LR) and (iv) harmonisation. Hence,
in order to have a better insight into our findings, we used
N-way ANOVA to assess the effect of each factor on the
performance of the prognostic model. Furthermore, a bias-
corrected effect size estimate, u2 [55], was calculated to
identify the proportion of variance explained by each factor.
AUC, area under the curve; PET, positron emission tomography.
Results

Univariate Analysis

Tables 2 and 3 show the top 10 radiomic features with
the highest predictive power (AUC) based on univariate
analysis on the original and harmonised feature sets,
respectively. According to Table 2, all significant predictors
belong to the extracted features from PET images in which
cm_joint_var_3D_comb, cm_joint_var_3D_avg, cm-sum-
var-3D-com and cm_clust_tend_3D_comb were the most
predictive features, with AUCs of 0.771, 0.770, 0.766 and
0.766, respectively.

According to Tables 2 and 3, after harmonisation, there
was no significant change in the top predictors and their
corresponding AUCs, except for the stat-var from first-order
features. Following harmonisation, stat-var was the best
predictor (AUC ¼ 0.77, however, the P-value was not sig-
nificant). The AUC of this feature before harmonisation was



Table 3
Top 10 radiomic features based on univariate analysis of the
harmonised data

Feature Category AUC P-value

stat_var HPET 0.770 0.07
cm_joint_var_3D_comb HPET 0.765 2.87E-4
cm_joint_var_3D_avg HPET 0.765 2.85E-4
cm_sum_var_3D_comb HPET 0.760 2.80E-4
cm_clust_tend_3D_comb HPET 0.760 2.80E-4
ngl_gl_var_3D HPET 0.760 5.34E-4
rlm_gl_var_3D_comb HPET 0.760 3.82E-4
rlm_gl_var_3D_avg HPET 0.760 3.84E-4
cm_sum_var_3D_avg HPET 0.759 2.89E-4
cm_clust_tend_3D_avg HPET 0.759 2.89E-4

AUC, area under the curve; HPET, Harmonised PET.
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0.733. It should be noted that P-values of features after
harmonisation were not significant.

Multivariate Analysis

The heatmaps of AUCs for the different combinations of
feature selections, classifiers and images before and after
harmonisation are presented in Figure 3. According to the
results, SVM fed with selected features by RFE from a
harmonised PET features set achieved the highest perfor-
mance (AUC ¼ 0.82). Overall, the selected features by RFE
resulted in higher AUCs in comparison with features
selected by Lasso. The mean � standard deviation and 95%
confidence intervals for AUC, accuracy, sensitivity and
specificity are provided in Supplementary Tables S2 and S3.

For better visualisation of the effect of ComBat harmo-
nisation on model performance, the box plots of AUCs are
presented in Figure 4. Evidently, ComBat harmonisation
did not necessarily improve model performance in all
cases. It mainly depended on the feature set, feature se-
lection method and classifier. According to the results of
our study, for CT images, the performance of the models
Fig 3. Heatmap of the area under the curve (AUC) for the different combi
(B) After features harmonisation.
did not significantly improve after harmonisation. For PET
and GFF feature sets, harmonisation improved the AUCs
significantly (P-values <0.05) for AdaBoost, SVM and LR
classifiers in combination with selected features by RFE.
For WLS, only in one case (LR þ Lasso) AUC increased after
harmonisation; in other cases, it did not enhance the
performance. The P-values of the Wilcoxon test are tabu-
lated in Table 4.

The results of the N-way ANOVA for each factor (radio-
mics model, feature selection, machine learning, harmo-
nisation) and their corresponding u2 (proportion of
variance explained by each factor) are shown in Figure 5.
Although the selection of the radiomics model and feature
selectionmethod can be effective on the performance of the
model (ANOVA P-values <0.001), machine learning and
harmonisation do not make a significant variance in the
performance (ANOVA P-values¼ 0.839, 0.292, respectively).
In addition, the biggest proportion of variance introduced to
performances was due to the selection of the feature se-
lection method (u2: 70.3%).
Discussion

ADC and SCC are both subtypes of NSCLC; however, they
have significant differences in terms of tissue and genetic
characteristics, as well as response to treatments. Therefore,
histopathological subtype identification plays a pivotal role
in the personalised treatment and management of patients
with NSCLC. In this context, recent radiomic studies have
shown promising results and confirmed the potential of
radiomics in the histopathological classification of NSCLC
[16e20]. In a single-centre study by Han et al. [20], PET/CT
images of 867 patients with ADC and 552 patients with SCC
were analysed retrospectively. Through the implementa-
tion of 10 feature selection and 10 machine learning algo-
rithms, their best model achieved an AUC of 0.863. Hyun
et al. [19] enrolled 396 patients (210 ADC and 186 SCC) to
develop a PET-based radiomics model to predict the
nations of models and feature sets. (A) Before features harmonisation.



Fig 4. Box plots of the area under the curve (AUC) for the different combinations of models.
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histological subtypes of NSCLC. The best classifier in their
study achieved AUC of 0.85. In a multicentre study by Yang
et al. [18], the data were collected from three different
centres. Three different models were developed, while be-
ing trained on one of the datasets and validated on two
remaining datasets. In addition, a model based on a com-
bination of three datasets was analysed and achieved the
highest predictive performance (AUC¼ 0.78) in comparison
with other models. More recently, Khodabakhshi et al.
[56,57] developed diagnostic models based on radiomic
features extracted from CT scans of NSCLC patients to
stratify them according to their histopathological subtype
and identify the most effective features. They enrolled 354
NSCLC subjects, including 134 SCC, 48 ADC, 110 large cell
carcinoma and 62 non-specified patients. The best model
(based on the features selected by the wrapper algorithm)
obtained an average precision of 0.710, recall of 0.703, F1-
score of 0.706 and accuracy of 0.865.

Yet, most of the conducted studies are based on single-
centre datasets and have not been validated on indepen-
dent multicentre datasets. Therefore, current radiomics
models suffer from a lack of generalisability. Non-biological
noise in multicentric datasets introduced by variability in
the scanner, imaging protocols, etc. are the main hindrances
of pooling data from different centres into statistical ana-
lyses. In this study, we used datasets from two different
centres and investigated the effect of a popular feature-level
harmonisation method, ComBat harmonisation, on the
performance of radiomics models for the differentiation of
NSCLC subtypes. Radiomic features were extracted from
ROIs of four image sets, including CT, PET and two sets of
fused images. The best classifier based on harmonised PET
radiomic features reached an AUC of 0.82 and a balanced
accuracy of 0.74. The corresponding values of these metrics
before harmonisation were 0.79 and 0.72, respectively.

A number of studies evaluated the ability of ComBat
harmonisation to remove the multicentre variability in PET
[58], CT [59] and magnetic resonance imaging radiomics
[60]. In a study by Orlhac et al. [58], the effect of the ComBat
method was evaluated on six PET texture features and SUVs
for breast lesions and healthy liver tissue. Based on this
study, ComBat harmonisation appears to be an effective



Table 4
P-values of Wilcoxon tests between area under the curve (AUC) values before and after harmonisation for the different combinations of
classifiers and feature selection algorithms

Image Method Mean AUC before harmonisation Mean AUC after harmonisation P-value

PET AdaBoost-Lasso 0.75�0.07 0.75�0.05 0.571
AdaBoost-RFE 0.78�0.06 0.80�0.07 0.023
SVM-Lasso 0.74�0.07 0.75�0.07 0.320
SVM-RFE 0.79�0.06 0.81�0.05 0.002
LR-Lasso 0.74�0.05 0.75�0.06 0.142
LR-RFE 0.77�0.05 0.81�0.06 8.469e-5

CT AdaBoost-Lasso 0.70�0.08 0.70�0.08 0.697
AdaBoost-RFE 0.78�0.06 0.79�0.06 0.196
SVM-Lasso 0.70�0.07 0.71�0.07 0.271
SVM-RFE 0.81�0.05 0.81�0.06 0.824
LR-Lasso 0.69�0.08 0.71�0.07 0.109
LR-RFE 0.80�0.06 0.79�0.06 0.180

GFF AdaBoost-Lasso 0.70�0.07 0.70�0.08 0.790
AdaBoost-RFE 0.76�0.07 0.79�0.06 0.005
SVM-Lasso 0.75�0.08 0.67�0.08 4.173e-10
SVM-RFE 0.74�0.07 0.78�0.07 8.123e-5
LR-Lasso 0.69�0.07 0.71�0.07 0.254
LR-RFE 0.76�0.07 0.78�0.07 0.022

WLS AdaBoost-Lasso 0.72�0.06 0.73�0.06 0.131
AdaBoost-RFE 0.79�0.07 0.77�0.06 0.024
SVM-Lasso 0.70�0.09 0.72�0.07 0.164
SVM-RFE 0.78�0.07 0.77�0.07 0.157
LR-Lasso 0.71�0.08 0.74�0.07 0.0167
LR-RFE 0.79�0.06 0.76�0.06 0.020

CT, computed tomography; GFF, guided filtering-based fusion; Lasso, least absolute shrinkage and selection operator; LR, logistic regres-
sion; PET, positron emission tomography; RFE, recursive feature elimination; SVM, support vector machine; WLS, weighted least square.
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method for removing multicentre effects for textural fea-
tures and SUVs. This study also indicated that the most
robust PET feature, i.e. entropy, can still be affected by the
scanner effect and thus requires compensation in multi-
centre studies. However, these studies confirmed the ability
of the ComBat method to reduce or remove the centre effect
while retaining biological information; they mainly focused
on the distribution of features before and after harmo-
nisation and did not investigate the effect of this method on
Fig 5. Proportion of variance explained by each factor.
the predictive power of machine learning algorithms. These
studies mainly focused on the effect of ComBat harmo-
nisation on the extracted features from single-modality
images, whereas we comprehensively tested the effect of
this approach on both single- and multimodality models.

The two centres utilised in this study used scanners from
different vendors. Both sites used similar protocols for PET
data acquisition [42]. CT-based attenuation correction and
ordered subsets expectation maximisation iterative
N-way ANOVA P-values of factors are also shown.
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reconstruction was used. The images were acquired from
the base-of-skull tomid-thigh and depending on theweight
of each patient, acquisition of each bed position took 1e5
min. CT acquisition protocols varied both within and be-
tween centres. However, despite the presence of interfering
variables, we defined the batches as centres. Two rationales
support this decision. First, there are oftenmajor limitations
in retrospective studies regarding the availability of dataset
details enabling the identification of imaging protocols/
factors, which is not always straightforward. We reduced
the effect of covariates based on suggestions from IBSI
guidelines to compensate for this effect [26,61]. The vari-
ability of voxel size in imageswas corrected by interpolating
all scans into an isotropic voxel spacing of 2� 2� 2 mm3. In
addition, intensity ranges were discretised to 64 grey-levels
to eliminate the variability due to differences in tube
voltage (kVp) or current (mAs) of the scans. Second, ‘Com-
Bat harmonization is not a fix-all solution’ [62,63] and can
be applied to different levels of variability. The first attempt
to remove the batch effect includes fixing variability due to
the centre effect. Further attempts can fine-tune the algo-
rithm by removing variabilities arising from more detailed
batches, such as acquisition parameters or even clinical
characteristics of the patients.

The results of our study indicate that the effect of feature
harmonisation on the predictive power of models varies
depending on the classifier, feature selection algorithms
and the nature of the feature. For instance, harmonisation
did not significantly improve the power of classifiers based
on CT radiomic features and, in two cases related to fused
images, it noticeably degraded the performance of models.
On the contrary, the performance was significantly
improved in models based on selected features from PET
feature sets selected by RFE feature selection. Moreover, to
assess the effect of selecting between different radiomic
modalities (PET, CT, fusion), feature selection and machine
learning method and finally harmonisation towards the
optimum performance, we carried out variability analysis
using N-way ANOVA. As shown in Figure 5, although the
selection of image modality and feature selection model
contributed effectively to changing the performance of
models, the selection of machine learning method and
whether performing harmonisation did not introduce sig-
nificant variance into the performance of models. Surpris-
ingly, 70.3% and 8.5% of the total variance in the
performance of models was due to the selection of the
feature selection method and image modality, respectively.
It seems that preselection of robust features against centre
effects, makes feature sets needless of harmonisation.
However, it may happen with the cost of losing useful
biological information. Further investigation using larger
datasets from multiple centres is required to prove this
assumption.

Although ComBat proved to be an effective method for
harmonisation in feature space, there are some multicentre
studies that have indicated that ComBat harmonisation did
not yield improvement in the performance of predictive
models [64e66]. In a study by Garau et al. [64], two different
low-dose CT radiomics-based models for classifying
malignant pulmonary lung nodules were developed and
externally validated on an independent cohort. In this work,
the effect of ComBat harmonisation was also investigated.
According to their results, harmonisation did not improve
the performance of models in terms of AUC and accuracy,
even though the harmonised features were statistically
different from non-harmonised features. Conversely, in a
comprehensive study by Da-Ano et al. [67], two modified
versions of ComBat were proposed and evaluated along
with ComBat harmonisation on two different cohorts of
patients with different endpoints. The first cohort consisted
of 197 patients with locally advanced cervical cancer from
three centres. In the second cohort, 98 patients with locally
advanced laryngeal or hypopharyngeal cancer from five
centres were included. ComBat harmonisation and modi-
fied versions consistently improved the performance of all
three different machine learning models. Therefore, more
comprehensive studies are needed to investigate the effect
of harmonisation on the performance of different machine
learning models for different imaging modalities, cancers
and endpoints.

In this study, contrary to previous radiomics studies
focusing on classifying NSCLC subtypes, we used datasets
from two different centres, leading to a more generalisable
radiomics model. Moreover, the effect of harmonisation on
models was extensively investigated on anatomical, func-
tional and hybrid image features. However, our study had
some limitations that need to be taken into consideration.
The first limitation was the sample size, which was actually
limited to only 178 patients. However, we used random
resampling to avoid overfitting and get more stable results.
One major challenge in our study was the unbalanced
dataset (147 ADC versus 31 SCC). The problem with unbal-
anced datasets is that the model cannot properly learn from
the minority class and would be biased towards the ma-
jority class in the dataset. In order to deal with this issue, we
applied a balanced class weight for all classifiers. In this
case, the model assigns weights that are inversely propor-
tional to the number of samples in each class; therefore, the
model puts a higher penalty for the misclassification of
minority class samples. Another approach for this issue is
the synthetic minority oversampling technique (SMOTE)
[68]. In this method, new samples are synthesised based on
the samples of the minority class. In addition to balanced
class weight, we also implemented the SMOTE algorithm.
However, as it did not improve the model’s performance,
the results were not reported in this work.

Finally, we suggest conducting more comprehensive
studies, including datasets frommore than two centres and
comparing the performance of harmonisation with its sur-
rogates, e.g. removing radiomic features that are not robust
to centre effects and investigating which method results in
a more generalisable model.
Conclusions

This study confirmed the potential of radiomics based on
PET, CT and hybrid images for the classification of NSCLC
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SCC and ADC subtypes. We showed that ComBat harmo-
nisation could improve the predictive power of models
based on PET images. The improvement was not statistically
significant for CT-based models, which indicates the
robustness of models on data from different datasets. For
fusion-based models, the effect of ComBat harmonisation
varied for the different classifiers and feature selection
algorithms.
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[50] Fortin JP, Parker D, Tunç B, Watanabe T, Elliott MA, Ruparel K,
et al. Harmonization of multi-site diffusion tensor imaging
data. Neuroimage 2017;161:149e170. https://doi.org/10.1016/
j.neuroimage.2017.08.047.

[51] Fonti V, Belitser E. Feature selection using lasso. VU Amster-
dam Res Paper Business Analytics 2017;30:1e25.

[52] Chen X-w, Jeong JC. Enhanced recursive feature elimination.
In: Sixth international conference on machine learning and
applications (ICMLA 2007). IEEE; 2007. p. 429e435. https://
doi.org/10.1109/ICMLA.2007.35.

[53] Noble WS. What is a support vector machine? Nat Biotechnol
2006;24:1565e1567. https://doi.org/10.1038/nbt1206-1565.

[54] Ying C, Qi-Guang M, Jia-Chen L, Lin G. Advance and prospects
of AdaBoost algorithm. Acta Automat Sin 2013;39:745e758.
https://doi.org/10.1016/S1874-1029(13)60052-X.

[55] Hays W, Winkler RL. Statistics; probability, inference, and de-
cision. Series in quantitative methods for decision making, New
York 1975.

[56] Khodabakhshi Z, Mostafaei S, Arabi H, Oveisi M, Shiri I,
Zaidi H. Non-small cell lung carcinoma histopathological
subtype phenotyping using high-dimensional multinomial
multiclass CT radiomics signature. Comput Biol Med 2021:
104752. https://doi.org/10.1016/j.compbiomed.2021.104752.

[57] Khodabakhshi Z, Amini M, Hajianfar G, Oveisi M, Shiri I,
Zaidi H. Histopathological subtype phenotype decoding using
harmonized PET/CT image radiomics features and machine
learning. In: IEEE nuclear science symposium and medical im-
aging conference. NSS/MIC); 2021. p. 1e3. https://doi.org/10.
1109/NSS/MIC44867.2021.9875734.

[58] Orlhac F, Boughdad S, Philippe C, Stalla-Bourdillon H,
Nioche C, Champion L, et al. A postreconstruction harmoni-
zation method for multicenter radiomic studies in PET. J Nucl
Med 2018;59:1321e1328. https://doi.org/10.2967/jnumed.117.
199935.

[59] Mahon RN, Ghita M, Hugo GD, Weiss E. ComBat harmoniza-
tion for radiomic features in independent phantom and lung
cancer patient computed tomography datasets. Phys Med Biol
2020;65:015010. https://doi.org/10.1088/1361-6560/ab6177.
[60] Orlhac F, Lecler A, Savatovski J, Goya-Outi J, Nioche C,
Charbonneau F, et al. How can we combat multicenter vari-
ability in MR radiomics? Validation of a correction procedure.
Eur Radiol 2021;31:2272e2280. https://doi.org/10.1007/
s00330-020-07284-9.

[61] Zwanenburg A, Leger S, Valli�eres M, L€ock S. Image biomarker
standardisation initiative 2016. arXiv preprint arXiv:
161207003.

[62] Ibrahim A, Primakov S, Barufaldi B, Acciavatti RJ, Granzier RW,
Hustinx R, et al. Reply to Orlhac, F.; Buvat, I. Comment on
“Ibrahim et al. The effects of in-plane spatial resolution on CT-
based radiomic features’ stability with and without ComBat
harmonization. Cancers 2021, 13, 1848. Cancers 2021;13:3080.
https://doi.org/10.3390/cancers13123080.

[63] Orlhac F, Buvat I. Comment on Ibrahim et al. The effects of in-
plane spatial resolution on CT-based radiomic features’ sta-
bility with and without ComBat harmonization. Cancers 2021,
13, 1848. Cancers 2021;13:3037. https://doi.org/10.3390/
cancers13123037.

[64] Garau N, Paganelli C, Summers P, Choi W, Alam S, Lu W, et al.
External validation of radiomics-based predictive models in
low-dose CT screening for early lung cancer diagnosis. Med
Phys 2020;47:4125e4136. https://doi.org/10.1002/mp.14308.

[65] StarmansM, TimbergenMJ, Vos M, RenckensM, Gr€unhagen DJ,
van Leenders GJ, et al. Differential diagnosis and molecular
stratification of gastrointestinal stromal tumors on CT images us-
ing a radiomics approach 2020. arXiv preprint arXiv:201006824.

[66] Ferreira M, Lovinfosse P, Hermesse J, Decuypere M,
Rousseau C, Lucia F, et al. [(18)F]FDG PET radiomics to predict
disease-free survival in cervical cancer: a multi-scanner/
center study with external validation. Eur J Nucl Med Mol
Imaging 2021;48:3432e3443. https://doi.org/10.1007/
s00259-021-05303-5.

[67] Da-Ano R, Masson I, Lucia F, Dor�e M, Robin P, Alfieri J, et al.
Performance comparison of modified ComBat for harmoni-
zation of radiomic features for multicenter studies. Sci Rep
2020;10:10248. https://doi.org/10.1038/s41598-020-66110-w.

[68] Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE:
synthetic minority over-sampling technique. J Artif Intell Res
2002;16:321e357. https://doi.org/10.1613/jair.953.

https://doi.org/10.1016/j.neuroimage.2017.11.024
https://doi.org/10.1016/j.neuroimage.2017.08.047
https://doi.org/10.1016/j.neuroimage.2017.08.047
http://refhub.elsevier.com/S0936-6555(23)00277-7/sref51
http://refhub.elsevier.com/S0936-6555(23)00277-7/sref51
http://refhub.elsevier.com/S0936-6555(23)00277-7/sref51
https://doi.org/10.1109/ICMLA.2007.35
https://doi.org/10.1109/ICMLA.2007.35
https://doi.org/10.1038/nbt1206-1565
https://doi.org/10.1016/S1874-1029(13)<?thyc=10?>60052-X<?thyc?>
http://refhub.elsevier.com/S0936-6555(23)00277-7/sref55
http://refhub.elsevier.com/S0936-6555(23)00277-7/sref55
http://refhub.elsevier.com/S0936-6555(23)00277-7/sref55
https://doi.org/10.1016/j.compbiomed.2021.104752
https://doi.org/10.1109/NSS/MIC44867.2021.9875734
https://doi.org/10.1109/NSS/MIC44867.2021.9875734
https://doi.org/10.2967/jnumed.117.199935
https://doi.org/10.2967/jnumed.117.199935
https://doi.org/10.1088/1361-6560/ab6177
https://doi.org/10.1007/s00330-020-07284-9
https://doi.org/10.1007/s00330-020-07284-9
http://refhub.elsevier.com/S0936-6555(23)00277-7/sref61
http://refhub.elsevier.com/S0936-6555(23)00277-7/sref61
http://refhub.elsevier.com/S0936-6555(23)00277-7/sref61
http://refhub.elsevier.com/S0936-6555(23)00277-7/sref61
http://refhub.elsevier.com/S0936-6555(23)00277-7/sref61
https://doi.org/10.3390/cancers13123080
https://doi.org/10.3390/cancers13123037
https://doi.org/10.3390/cancers13123037
https://doi.org/10.1002/mp.14308
http://refhub.elsevier.com/S0936-6555(23)00277-7/sref65
http://refhub.elsevier.com/S0936-6555(23)00277-7/sref65
http://refhub.elsevier.com/S0936-6555(23)00277-7/sref65
http://refhub.elsevier.com/S0936-6555(23)00277-7/sref65
http://refhub.elsevier.com/S0936-6555(23)00277-7/sref65
https://doi.org/10.1007/s00259-021-05303-5
https://doi.org/10.1007/s00259-021-05303-5
https://doi.org/10.1038/s41598-020-<?thyc=10?>66110-w<?thyc?>
https://doi.org/10.1613/jair.953

	Dual-Centre Harmonised Multimodal Positron Emission Tomography/Computed Tomography Image Radiomic Features and Machine Lear ...
	Introduction
	Materials and Methods
	Datasets
	Image Processing
	Image Fusion

	Feature Extraction
	Image Harmonisation Using ComBat
	Univariate Analysis
	Multivariate Analysis
	Feature Selection
	Classification


	Results
	Univariate Analysis
	Multivariate Analysis

	Discussion
	Conclusions
	Author Contributions
	Declaration of competing interests
	Acknowledgments
	Appendix B. Supplementary data
	References


