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A B S T R A C T   

Artificial Intelligence (AI) methods have significant potential for diagnosis and prognosis of COVID-19 infections. 
Rapid identification of COVID-19 and its severity in individual patients is expected to enable better control of the 
disease individually and at-large. There has been remarkable interest by the scientific community in using im-
aging biomarkers to improve detection and management of COVID-19. Exploratory tools such as AI-based models 
may help explain the complex biological mechanisms and provide better understanding of the underlying 
pathophysiological processes. The present review focuses on AI-based COVID-19 studies as applies to chest x-ray 
(CXR) and computed tomography (CT) imaging modalities, and the associated challenges. Explicit radiomics, 
deep learning methods, and hybrid methods that combine both deep learning and explicit radiomics have the 
potential to enhance the ability and usefulness of radiological images to assist clinicians in the current COVID-19 
pandemic. The aims of this review are: first, to outline COVID-19 AI-analysis workflows, including acquisition of 
data, feature selection, segmentation methods, feature extraction, and multi-variate model development and 
validation as appropriate for AI-based COVID-19 studies. Secondly, existing limitations of AI-based COVID-19 
analyses are discussed, highlighting potential improvements that can be made. Finally, the impact of AI and 
radiomics methods and the associated clinical outcomes are summarized. In this review, pipelines that include 
the key steps for AI-based COVID-19 signatures identification are elaborated. Sample size, non-standard imaging 
protocols, segmentation, availability of public COVID-19 databases, combination of imaging and clinical infor-
mation and full clinical validation remain major limitations and challenges. We conclude that AI-based assess-
ment of CXR and CT images has significant potential as a viable pathway for the diagnosis, follow-up and 
prognosis of COVID-19.   

1. Introduction 

Despite the rapid onset of the coronavirus disease 2019 (COVID-19), 
the ever-evolving knowledge of the disease’s symptoms, and the medical 
consequences for both patients and clinicians, many radiologists remain 
unsure regarding whether or not to include COVID-19 pneumonia in the 
differential diagnosis [1–4]. The rapid identification of COVID-19 and 
the extent of the infections will allow better control of the virus spread. 

In order to better manage the pandemic, early detection, severity 
scoring, and prediction are crucial. 

Given the contagious nature of the SARS-CoV-2 virus, the timely 
recognition of patterns in COVID-19 images is highly important. Subject 
to availability of reverse transcription polymerase chain reaction (RT- 
PCR) kit for detecting COVID-19 infection, and according to the specific 
version of PCR, the results can be obtained in less than 1 h up to few 
days. In addition, while RT-PCR is highly specific, it can have low 
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sensitivity, and studies have raised false-negatives in patients with ab-
normalities in chest Computed Tomography (CT) images confirmed with 
secondary follow-up RT-PCR to be positive for COVID-19 [5,6]. The 
potential for the detection of COVID-19 using minable quantitative data 
from chest x-ray (CXR)/CT images relies on development of adequate 
models for clinical use [7–9]. For instance, results of Deep Learning (DL) 
models on CXR from COVID-19 infected patients revealed that the 
elderly, comorbidities, as well as acuity of care are highly associated 
with the severity of the COVID-19 [10]. Therefore, utilizing artificial 
intelligence (AI) technology is has the potential to develop new ap-
proaches for prognosis, and follow up of COVID-19 infected cases. 

AI-based analysis of medical imaging (including radiomics as a 
subset of it) are advanced automated image analysis approaches, with 
significant potential for precision medicine by means of data mining to 
provide insights into intra-regional heterogeneity of abnormal tissues 
[11,12]. Quantitative features extracted from standard of care medical 
images enables derivation of enhanced biomarkers of disease that could 
impact the clinical decision process. This so-called population-imaging 
approach may use either unstructured data from different modalities 
acquired for a specific purpose but possibly unrelated diagnostic pur-
pose in broadly defined groups, or a single imaging test in a large cohort 
for multicentre longitudinal studies [13]. Imaging biomarkers estab-
lished as such may provide key insights to disease processes as they 
describe lesions growth and tissue characteristics [14]. 

Conventional radiomics workflows involve extraction of so-called 
radiomics features (hand-crated or explicit features) from segmented 
regions of interest (ROI) [15–20]. An alternative approach to this is deep 
leaning (DL), in which the features are implicitly derived utilizing neural 
networks [21–25]. Highly mature studies utilizing DL algorithms for 
detection and/or reporting the severity of COVID-19 infections are in 
Refs. [26–32]. Moreover, DL technically does not require segmented 
ROIs, and, if large enough datasets are provided, is able to focus on areas 
of importance. Each of these methods (radiomics and DL) has its own 
advantages (the former working better for small/medium datasets; the 
latter working better on large datasets). Other than that, hybrid methods 
integrating the two approaches (“deep radiomics”) have also been 
explored to utilize quantitative data extracted/derived from medical 
images [33]. Examples of this approach include initial generation of 
radiomics images at the voxel level fed into deep neural networks 
(DNNs), or alternatively, extraction of deep features as generated by 
DNNs (e.g., in the fully connected layer) combined with machine 
learning algorithms. 

Radiomics (and the use of ML techniques to combine radiomics 
features into a model; i.e., radiomics signature) may be applied to the 
acquired datasets to enhance the assessment of diseases. However, 
linking radiomics (i.e., process of extracting quantitative image fea-
tures) to biological or pathophysiological processes being investigated 
remains challenging, and has in the past hindered the translation of 
radiomics into clinical practice despite providing promising results into 
tissue characterization; this issue, however, is receiving further atten-
tion in recent years and is an active area of research [14]. Beyond the 
direct impact of COVID-19 AI-based methods for the diagnosis and 
prognosis of SARS-CoV-2 virus, an explicit research pathway may lead to 
establishment of a comprehensive prognostic approach to fight the 
spread of COVID-19. 

To this end, Born et al. [34] performed a systematic meta-analysis 
focusing on ML-based COVID-19 utilizing CXR, CT, and ultrasound im-
ages aiming to identify the most relevant articles. Bhattacharya et al. 
[35] focused on reviewing DL algorithms which were utilized in 
COVID-19 analysis and an overview of DL and its clinical impact over 
the last decade. Elsewhere, Shoeibi et al. [36] performed a complete 
review of DL techniques and tools for COVID-19 detection and lungs 
segmentation. Moreover, the challenges related to the automated 
detection of coronavirus infections using DL methods were reported. 
The authors summarized the COVID-19 prevalence in several parts of 
the world. Recently, Suri et al. [37] investigated a variety of 

comorbidities and their associated risks in acute respiratory distress 
syndrome and mortality. They elaborated on AI architectures and their 
extension from pre-COVID-19 to post-COVID-19 and the views of seven 
school-of-though were summarized. It is worth mentioning that 
non-imaging information obtained from genomics, proteomics, lip-
idomics, and transcriptomics, combined with AI-based approaches, can 
be valuable for the diagnosis and prognosis of COVID-19 [38,39]. To 
have a clearer picture on deploying AI-based approaches in clinical 
practice to help the fight against COVID-19, Fig. 1 illustrates the 
workflow of conventional methods (non-AI methods) and AI-based 
methods. 

Unlike the above-mentioned review articles, the aims of this work 
are to: (i) present a specific AI workflow utilizing CT and CXR images; 
and (ii) enhance the current knowledge towards improved future AI- 
based COVID-19 studies in terms of selecting appropriate segmenta-
tion, feature extraction, dimensionality reduction, and classification 
methods. Moreover, existing challenges in AI-based efforts are 
addressed, and recommendations on possible improvements are made; 
(iii) finally, the clinical impact of relevant AI-based COVID-19 studies 
are presented. This review focuses on AI-based COVID-19 studies uti-
lizing CXR and CT imaging. 

2. Utilization of AI to assess COVID-19 images 

AI methods utilize machine learning (ML) approaches (as applied to 
radiomics features) vs. deep learning (DL) algorithms as directly applied 
to the images [4,5]. ML and DL have played significant roles to mine, 
interpret, and identify data patterns. ML models utilized for the diag-
nosis and/or prognosis of COVID-19 which were reported have included: 
Support Vector Machine (SVM) [40–42], Random Forest (RF) [43,44], 
Decision tree (DT) [45,46], and Logistic regression (LR) [47,48]. DL 
models frequently employed have been convolutional neural networks 
(CNNs) [49,50] and recurrent neural networks (RNNs) [51,52]. It was 
successfully demonstrated that AI-based model, combining CT/CXR 
modality and other clinical information, could be useful in screening 
COVID-19 that does not require radiologist input or physical tests. Xia 
et al. [53] performed a DL-based approach utilizing a classifier that 
combines clinical variables such as patient demographics, symptoms 
(cough, fever, sore throat, etc.), signs of infection (e.g., enlarged tonsils 
and lymph nodes), underlying diseases (e.g., hypertension, diabetes, 
etc.), and blood results with CXR data to distinguish COVID-19 from 
viral pneumonia in a simple, efficient, inexpensive, and accurate way. A 
recent study by Shiri et al. [54] revealed that integrating radiomics 
features with demographics and clinical data (gender, age, weight, 
height, BMI, medical history of comorbidities and vital signs), labora-
tory features (blood tests) and radiological data (scoring by radiologists) 
can help the prediction of overall survival in COVID-19 patients. 

Overall, AI is a valuable technology for early detection of COVID-19 
infections and proper health monitoring. CT and CXR have been iden-
tified and used as the imaging modalities of choice for the prognosis of 
COVID-19 infections. The following two sections (II.1 and II.2) describe 
AI-based signatures of COVID-19 studies utilizing CXR and CT scans. 

2.1. Chest radiography (CXR) 

Potential trends and information derived from the X-ray radiographs 
scans has proved to be useful in COVID-19 diagnosis since pulmonary 
infections have been detected through X-ray images [55]. CXR are 
commonly performed first and play role as an alternative viable choice 
when CT scanners are not available for fast diagnosis and monitoring the 
progression of COVID-19 cases [56,57]. In COVID-19 CXR findings are: 
pneumonia, namely bilateral peripheral and/or, subpleural ground glass 
opacity (GGO) and/or consolidation, unilateral non-segmental/lobar 
ground-glass or consolidative opacities or multifocal 
ground-glass/consolidative opacities without many particular distribu-
tions (Fig. 2). Moreover, using public CXR databases increased 
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remarkably the number of AI-based COVID-19 studies that aimed to 
detect, follow, and predict outcome of SARS-CoV-2 infections [58]. 
DL-based approaches allowing automated analysis of CXR images 
significantly accelerated the analysis and processing time and helped 
speed-up the identification and control of the spread of COVID-19 [59]. 

Bukhari et al. [60] evaluated a total of 278 CXRs, applying ResNet-50 
CNN architectures. These chest X-ray images were grouped into normal, 
pneumonia, and COVID-19. A ResNet-50 pre-trained architecture was 
chosen to diagnose COVID-19 pneumonia on related set of lung CXRs. 
The results illustrate that the diagnostic accuracy of the deep learning 
method was 98.2 %. Apostolopoulos et al. [61] investigated the possi-
bility of extracting COVID-19 biomarker from 3905 CXRs. The randomly 
CXRs selected corresponded to: pulmonary edema, pleural effusion, 
chronic obstructive pulmonary disease, pulmonary fibrosis and 
COVID-19 infection. CNNs models were trained from scratch conven-
tional diagnosis, to identify the CXRs between the 5 classes and 
COVID-19 and non-COVID-19 scans. The classification accuracy be-
tween the seven classes was 87.66 %. Moreover, accuracy, sensitivity 
and specificity of COVID-19 diagnosis were reported to be 99.2 %, 97.4 
%, and 99.4 %, respectively. 

Training a CNN model from scratch necessitates a large amount of 
training data and technical skills to determine the best model architec-
ture for optimal convergence. Additionally, this requires time- 

consuming annotations by radiology experts. Due to computational re-
quirements and memory constraints, CNN training takes a long time. 
Transfer learning has the advantage to decrease computational 
complexity and to speed-up the process. Basu et al. [62] successfully 
classified CXR images (accuracy of 90 %) into four classes: normal, 
pneumonia, other disease, and COVID-19, using a CNN pre-trained on 
normal and disease classes that were obtained from the National In-
stitutes of Health (NIH) Chest X-ray freely-accessible database. The 
activation map was used to identify regions where the emphasis was 
classification of features. The average detection precision was found to 
be 95.2 %. 

Hall et al. [63] obtained on overall accuracy of 91.2 % when they 
pertained 135 CXR of COVID-19 and 320 CXR of viral and bacterial 
pneumonia by a deep CNN (Resnet50 software). They suggested and 
recommended that CXR is an inexpensive, accurate and fast imaging 
modality for diagnosis of COVID-19. Wang et al. [64] proposed 
COVID-Net as a new deep learning architecture for prediction of 
COVID-19 disease using CXR. A dataset with a total of 5896 CXR images 
(358 COVID-19 and 5538 non-COVID-19) was studied. In total, four 
classes of cases were considered: (a) normal, (b) bacterial infection, (c) 
non-COVID infection, and (d) COVID-19 infection. Given the quantity of 
COVID-19 images collected, the distribution of inter-class images among 
their training sets and among their validation sets was highly 

Fig. 1. Conventional and AI-based radiology workflow in COVID-19.  

Fig. 2. Three CXR images of a patient diagnosed with COVID-19 at days (A) 4, (B) 14, and (C) 29 of admission to the Royal Hospital, Muscat, Oman. The images in 
these 3 dates indicate: (A) bilateral peripheral lower lobe opacities, (B) bilateral mostly peripheral consolidations in the middle and lower lung zones, and (C) 
bilateral reticular opacities in the middle and lower lung zones. 
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unbalanced. They leveraged the principles of residual architecture 
design. A 93 % accuracy was obtained by the COVID-Net architecture 
emphasizing the ability to utilize new DNN architectures, and reflecting 
ever-evolving efforts on dedicated DL architectures. 

Zhang et al. [13] performed advanced analysis using a DNN 
(CV19-Net) to differentiate COVID-19 from non-COVID-19 infections, 
on a total of 11105 CXR images (2060 COVID-19 cases and 3148 
non-COVID-19 cases). State-of-art algorithms for the test set, CV19-Net 
achieved a sensitivity of 88 % and a specificity of 79 % by using a 
high-sensitivity operating threshold, and a sensitivity of 78 % and a 
specificity of 89 % by using a high-specificity operating threshold. They 
evaluated the performance of CV19-Net by choosing 500 CXR that were 
examined by the both CV19-Net and three radiologists. They reported an 
AUC of 0.90 for CV19-Net and an AUC of 0.85 obtained by radiologists. 

2.2. Computed tomography (CT) 

As COVID-19 continues to infect people all around the world, beside 
real-time reverse transcription polymerase chain reaction, CT plays an 
essential role in faster diagnosis. Various manifestations of COVID-19 on 
chest CT images (particularly, consolidation, GGO, or a mixture of GGO 
and consolidation) were important to distinguish between infections of 
the lungs [65]. Hence, early COVID-19 screening, differential diagnosis 
(see Fig. 3), and disease severity assessment/follow-up was achieved 
from reading chest CT scans (refer to Fig. 4). Moreover, CT images 
helped radiologists to visualize the effects of COVID-19 by means of 3D 
printing technology [66]. 

The most common CT findings, as lesion features, can be categorized 
into: (1) small peripheral/subpleural, bilateral, ground-glass opacities 
with/without consolidation; (2) crazy-paving pattern; (3) air broncho-
gram sign; (4) consolidation; (5) linear opacities; and (6) bronchial wall 
thickening [67]. In addition to detecting COVID-19 using deep learning 
methods, Shiri et al. [68] proposed a deep learning based algorithms for 
dose reduction in chest CT images. They implemented a residual DNN to 
generate high quality images from ultra-low dose CT images. Model 

were built on 970 chest CT images and evaluated on 170 external vali-
dation set of COVID-19 patients. They reported 89 % dose reduction in 
CT images with properly recovering most common lesion features in 
COVID-19 images. Shan et al. [69] suggested a method for reducing the 
prognosis time by automated methods of delineating CT images from 1 
to 5 h to 4 to 3 min compared with manual method. They used a 
human-in-the-loop strategy to accelerate the delineation of CT images. 
The authors reported that this auto contoured regions could assist ra-
diologists for their annotation refinements. Song et al. [70] conducted a 
deep leaning-based study on CT images of 88 COVID-19 and normal 
cases. They reported sensitivity of 93 % the model to distinguish 
COVID-19 from pneumonia. Ai et al. [71] emphasized that with RT-PCR 
as a reference, the sensitivity of chest CT imaging for COVID-19 was 97 
%. Lin et al. [71] performed retrospective and multi-centre DL-based 
model study utilizing COVID-19 detection neural network (COVNet) for 
feature extraction from CT scans for COVID-19 diagnosis purpose. 
Community-acquired pneumonia and other non-pneumonia CT exams 
were included to study of the model. The pre-exam sensitivity and 
specificity in detecting community-acquired pneumonia in the test via 
COVNet were reported to be 87 % and 92 % respectively. 

Although, CT has been reported as a most accurate tool to detect the 
COVID-19 [72], Elsewhere, Li and his colleagues Xia illustrated the dark 
side of CT scans on diagnosis of COVID-19. They found that CT findings 
of COVID-19 overlapped with the CT features of adenovirus infection 
due to this limitation in distinguishing between viruses and identifica-
tion the infection patterns of other viruses [73]. In most recent study, 
Shiri et al. [54] implemented a holistic radiomics model with combining 
CT radiomics features (extracted from lung, and pneumonia lesion) with 
clinical features (demographic, laboratory and radiological score) for 
outcome prediction of COVID-19 patients. Model were build and eval-
uated on 106 and 46 patient data respectively and they reported the 
combining all information (AUC of 0.95, sensitivity of 0.88 and speci-
ficity of 0.89) outperformed radiomics only or clinical-only models. 

Fig. 3. COVID-19 positive cases admitted at 
the Royal Hospital, Muscat, Oman; (A) A 57 
year-old female admitted with COVID-19, 
admission day 24 with no wearable respira-
tory monitoring system. CT of the chest 
showing bilateral GGO with peripheral dis-
tribution; (B) A 63 year-old male patient 
admitted with COVID-19 with a history of 
desaturation. Images from a contrast 
enhanced CT of the thorax showing bilateral 
diffuse GGO; (C) A 78 year-old male 
admitted with severe bilateral COVID-19 
pneumonia. CT shows bilateral peripheral 
GGO with prominent interstitial septae with 
crazy paving pattern; (D) A 59 year-old male 
patient with hypoxemia COVID-19. CT 
shows bilateral peripheral GGO with forma-
tion of peripheral bands sparing the sub-
pleural area.   

Y. Bouchareb et al.                                                                                                                                                                                                                             



Computers in Biology and Medicine 136 (2021) 104665

5

3. AI-BASED workflows in the assessment of images for COVID- 
19 

AI-based analysis has also been shown to have a role in detecting 
COVID-19. More specifically, radiomics investigations have demon-
strated radiomics textural features capable of distinguishing COVID-19 
form other type of pneumonia. Radiomics workflow in COVID studies, 
similar to others, includes image acquisition, lungs lesion segmentation 

and feature extraction, feature selection, signature construction, and the 
evaluation of developed model. By contrast, in the DL workflow, explicit 
feature extraction is omitted and the network used itself created the 
model based on implicitly derived features. 

3.1. Image acquisition 

Image acquisition is the first stage in the AI-based workflow. 

Fig. 4. A 34 year-old male with COVID-19. (A) The first image was done on day15 from admission (day 19 from diagnosis). (B) The second image is done day 35 of 
admission (day 39 from diagnosis). The first image showing bilateral diffuse ground glass opacities. The follow-up showing improvement in the ground glass opacities 
but development of septal thickening and bands. 

Table 1 
Summary of image acquisition techniques in published articles.  

Reference Modality- Device model Tube 
Voltage 
(kV) 

Tube 
current 

Slice thickness 
(mm) 

Collimation 
(mm) 

Matrix 
size 

Pitch 

Fang et al. 
(2020) 

CT- Philips Brilliance iCT; Dutch Philips 120 100–400 
mA 

0.9–5 0.625 512 ×
512. 

0.914 

Guiot et al. 
(2020) 

CT- Siemens Edge Plus, GE Revolution CT, GE Brightspeed STANDARD reconstruction (no mention of acquisition and reconstruction parameters) 

Li et al. (2020) CT- Discovery CT750HD, GE Healthcare 120 250–400 
mA 

5 – – – 

Fang et al. 
(2020) 

CT- 64: Somatom, Siemens 
Healthcare; 256: Brilliance-16P, Philips Healthcare; 128: uCT 760, 
United Imaging Healthcare 

120 – 1 0.6 256 ×
128 

– 

Liu et al. 
(2020) 

CT- Hitachi Medical, Japan 120 180–400 
mA 

5 0.625 512 ×
512 

1.5 

Wang et al. 
(2020) 

CT- 16-MDCT, SOMATOM Emotion16, 
SIEMENS, Germany; 16-MDCT, Definition AS, SIEMENS, 
Germany; 64-MDCT, Optima CT680, GE, USA 

120 300 mAs 5 0.625–1.25 – – 

Zeng et al. 
(2020) 

CT- Light-speed; GEHealthcare, Chicago, IL 120 100–250 
mAs 

– – – – 

Shi et al. 
(2020) 

CT- SOMATOM 
Perspective, SOMATOM Spirit, or SOMATOM Definition 
AS+ (Siemens Healthineers, Forchheim, Germany). 

120 – 1⋅5 or 1 and an 
interval of 1⋅5 or 1 

0.6 –  

Li et al. (2020) CT – – – – 512 ×
512 

– 

Zheng et al. 
(2020) 

CT- GE Discovery CT750HD; GE Healthcare, Milwaukee, WI 100 350 mA 5 0.625 512 ×
512 

1.375 

Huang et al. 
(2020) 

CT- Siemens, Germany; Philips, the 
Netherlands; and GE, USA 

120 – 1 or 1.5; and layer 
spacing, 1.5 

0.6 128 ×
128 

– 

Juanjuan et al. 
(2020) 

CT- 1212LightSpeed VCT (General Electric Medical Systems, 
USA), Somatom Sensation (Siemens Heathcare), Somatom 
Definition (Siemens Heathcare), and Somatom Definition AS+
(Siemens Heathcare).) 

STANDARD protocol (no mention of acquisition and reconstruction parameters) 

Wei et al. 
(2020) 

CT- NeuViz 128 120 150 5 – 512 ×
512 

1.2 

Zheng et al. 
(2020) 

CT- Ingenuity Core128, Philips Medical Systems, Best, the 
Netherlands; Somatom Definition 
AS, Siemens Healthineers, Erlangen, Germany 

120 – 1.5 – 512 ×
512 

– 

Li et al. (2020) CT- uCT 780, United Imaging; or Somatom Force, Siemens 
Healthcare 

Multiplanar reformatting (MPR) technique.  

Y. Bouchareb et al.                                                                                                                                                                                                                             



Computers in Biology and Medicine 136 (2021) 104665

6

Currently available clinical imaging modalities allow wide variations in 
acquisition and image reconstruction protocols as illustrated in Table 1. 
Image derived metrics such as radiomics features are sensitive to image 
acquisition settings, reconstruction algorithms and image processing 
methods [68]. 

3.2. Segmentation 

Image segmentation is an essential processing step that helps 
improve the accuracy image analysis and clinical reports [19]. By using 
image segmentation techniques, an image is divided into specific groups 
of pixels, assigned labels (lung regions, lesions, etc) and classified 
further according to these labels. The labels generated by image seg-
mentation are then provided as an input to AI-based methods. Subse-
quently, radiomics features can be calculated from the segmented 
2D/3D ROI in radiomics based analyses. In relation to the target ROIs, 
the segmentation method in AI-based COVID-19 are classified into, (a) 
the lung-region-oriented method, which is basically able to separate the 
entire lung and lung lobes in CT/CXR images; (b) the 
lung-lesion-oriented method; which tries to distinguish lesion in the 
whole lung from the regions. By segmenting lesions and healthy lungs in 
CT images, volume of infection and relative volume (lesion/lung) could 
be calculated, which further could be used as prognostic and severity 
scoring of COVID-19 patients. Automatic and semiautomatic segmen-
tation approaches can either define features as COVID-19 or 
non-COVID-19. 

Overall, segmentation techniques are specifically divided into four 
categories; (a) manual-based segmentation is defined as the delineation 
of the contours of anatomical regions that is performed by experts (e.g. 
radiologists, pathologists) [74]; (b) model-based segmentation is 
defined as the assignment of labels to pixels or voxels by matching the a 
priori known object model to the image data [75]; (c) DL-based seg-
mentation (dominantly CNN-based) as used for automated feature 
extraction; and (d) hybrid segmentation methods which combines con-
ventional and DL-based methods [76,77]. Segmentation of the lungs in 
COVID-19 infected cases consists of delineating the borders of the 
anatomical structures of lung or pneumonia lesions with 
computer-assisted contouring. It delineates regions of interest (ROIs) or 
volumes of interest (VOIs) in COVID-19 CT or CXR images; these are 
commonly: whole lungs, lung lobes, trachea, lung lesions, bronchus and 
pneumonia lesions. For segmentation, different methods were utilized 
including, thresholding, region-based, clustering-based, 
watershed-based algorithms [78–82]. Due to high variety of shape, size, 
boundary, type and manifestation of lesion in COVID-19 conventional 
algorithms failed to properly segment the lung and pneumonia lesions. 
In the COVID-19 pandemic, several ML-based algorithm were proposed 
for lung and lesion segmentation of COVID-19 radiological images [83, 
84]. Support Vector Machine (SVM) [85] is an ML method that has re-
ported widely for supervised segmentation in radiomics-based 
COVID-19 studies [86,87]. 

Unlike conventional segmentation methods, unsupervised segmen-
tation methods have typically relied on intensity or gradient analyses of 
the image via various strategies (i.e, using Inf-Net for COVID-19 CT 
images) to delineate the contours of the anatomical areas in the image. 
Such methods can as such dive deeper in considering several resolution 
levels in medical images. It is also possible to use unsupervised deep 
learning models for segmentation. Each and every layer will learn in-
formation from the CXR/CT images depending on the content of images 
or feature map. Deng-Ping et al. [88] proposed Inf-Net to determine 
coarse regions, which were followed by applying implicit models that 
boosted boundaries detection. They also used semi-supervised segmen-
tation on COVID-19 SemiSeg and real CT images to render most of the 
unlabelled data. Surprisingly, they observed that the semi-supervised 
system enhanced volume learning capabilities compared to other 
cutting-edge programs. 

To enhance the accuracy of predicted model utilizing two 

architecture methods (U-Net and Resnet-50) for segmentation of CT 
images of lung abnormalities was suggested. The proposed method en-
ables the segmentation of ROIs and classify CT scans as COVID-19 and 
non-COVID-19 cases [5–8]. As it was mentioned above, U-Net and its 
variant have been developed and have achieved fair segmentations in 
COVID-19 CT/CXR images. Çiçek et al. [35] recommended the 3D U-Net 
that utilizes the inter-slice info by replacing the layers in well-known 
U-Net method in 3D format. A VB-Net was used by Shan et al. [89] for 
more effective segmentation. Elsewhere, Tang et al. [86] adopted a 
VB-net [7] to perform accurate segmentation of the whole lungs and 
lung lesions from CT images. Using U-Net with the initial seeds provided 
by a radiologist, Qi et al. [37] presented segmentation of lesions in the 
lungs (see Table 2). 

To evaluate segmentation accuracy, dice similarity coefficient (DSC) 
as a metric has been employed to determine the overlap between 
automatically segmented COVID-19 infection regions in the lungs and 
gold-standard manual delineations. Shan et al. [69] reported 92 % DSC 
for automated segmentation of COVID-19 infection using VB-Net. Else-
where, Shan et al. [90] utilized DL-based method for determining the 
severity of COVID-19 using 549 CT scans of COVID-19 patients. They 
applied VB-Net, an automated segmentation tool, and reported 92 % 
DSC. In a more recent study, Shiri et al. [91] proposed a deep residual 
network based algorithm, COLI-NET, for whole lung and pneumonia 
lesion segmentation. The used 2358 clinical CT images (consisting of 
347259 2D slices) for whole lung segmentation and 180 CT images 
(consisting of 17341 2D slices) for training of the networks. Evaluation 
was performed on 5 external validation datasets emanating from various 
centres in different countries (multi-scanner and multi-centre study). 
For lesion segmentation, they used transfer learning of networks from 
whole lung segmentations. The reported Dice coefficients were 0.03 ±
0.84 % (95 % CI, − 0.12–0.18) and − 0.18 ± 3.4 % (95 % CI, − 0.8–0.44) 
for the lung and lesions, respectively. They also reported relative errors 
less than 5 % for first-order and shape radiomics features in both lung 
and lesions. Fig. 6 provides an example comparing manual segmentation 
performed by a radiologist and COLI-NET output for whole lung and 
lesion segmentation for COVID-19 patients at different stage (from mild 
to severe). 

3.3. Extraction of radiomics features 

For the radiomics subset of AI-methods, effective feature extraction 
is a pillar of radiomics towards learning rich and informative repre-
sentations from raw input data to provide accurate and robust results. 
Knowledge of the different types of radiomics features and core princi-
pals may facilitate interpretation of results and preselection of features 
for specific application. To extract the desired radiomics features of 
COVID-19, segmentation and processing of images should be performed 
accurately. In other words, feature extraction indicates the computation 
of features, where descriptors are used to determine attributes of the 
gray levels within the 2D/3D ROI [92]. Features have to be obtained so 
that they express the complexity of each volume as best possible, but 
cannot be excessively redundant or complex. To date, several techniques 
and algorithms have been applied to extract COVID-19 features, 
although no agreement exists about a standard method (see Fig. 5 and 
Table 2). 

Different types of COVID-19 explicit radiomics features were iden-
tified, the most commonly found ones are shape, statistics, histogram, 
and texture features including Gray-Level Co-occurrence Matrix 
(GLCM), Gray Level Run Length Matrix (GLRLM), and Gray Level Size 
Zone Matrix (GLSZM). Moreover, the extraction depends on the amount 
of data, and different types of filters such as Wavelet decomposition or 
Gaussian filters that are carried out to identify the key points in the 
images during this step of the radiomics pipeline. Various sets of features 
can be studied and combined for developing the suitable model for 
diagnostic and prognostic purpose [40]. In DL approaches, features 
extraction is achieved implicitly via DNNs. Using these approaches, 
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Table 2 
A listing of AI-based published articles.  

Reference Modality/ 
Subjects 

Segmentation 
Method 

Feature 
Extraction 

Type of 
Feature 

Feature 
Selection/ 
Derivation 
Methods 

Model training Model 
Validation 

AI-based 
method 

Task 

Fang et al. 
(2020) 

CT/46 
COVID-19, 
and 29 other 
types of 
pneumonias 

2D/Manually/ 
ITK-SNAP 
software (v. 
3.6.0) 

MATLAB (in- 
house developed 
tool-box) 

Intensity- 
based 
statistical 
features, 
GLCM, 
GLRLM 

ML SVM 3-fold cross- 
validation 

radiomics Severity 
assessment 

Guiot et al. 
(2020) 

CT/181 
COVID-19, 
1200 non- 
COVID [110] 

2D and 3D/ 
RadiomiX 
(OncoRadiomics 
SA, Liège, 
Belgium) 

RadiomiX 
(OncoRadiomics 
SA, Liège, 
Belgium) 

Statistics, 
texture, and 
shape 

ML Multivariable logistic 
regression with Elastic 
Net regularization 

10-fold cross 
validation 

radiomics Detection 

Autee et al. 
(2020) 

CXR/868 
COVID-19, 
9096 non- 
COVID [111] 

2D/U-NET – – DL Multi-layer perceptron 
stacked ensembling 
approach 

5-fold cross 
validation 

DL Diagnosis 

Shuo et al. 
(2020) 

CT/723 
COVID-19 

3D/Automated/ 
U-Net, V-Net, 
and 3D U-Net++

– – DL ResNet-50, Inception 
networks, DPN-92, 
and Attention ResNet- 
50 18 

AUC curve DL – 

Liping et al. 
(2020) 

CT 3D/Manually/ 
ITK-SNAP 
software 

QAK software Histogram, 
shape 
factors, 
GLCM, RLM, 
GLZSM 

ML LASSO AUC, 
accuracy, 
sensitivity, 
and 
specificity 

radiomics Diagnostic 

Armando Ugo 
et al. (2020) 

CXR [112] Manually/ 
MaZda 4.6) 

MaZda 4.6 Gray level 
histogram 
analysis, co- 
occurrence 
matrix, and 
Wavelet 
transform 

ML Partial Least Square 
Discriminant Analysis 
(PLS-DA), Naïve Bayes 
(NB), Generalized 
Linear Model (GLM), 
Logistic Regression 
(LR), Fast Large 
Margin (FML), 
Decision Tree (DT), 
RF, Gradient Boosted 
Trees (GBT), artificial 
Neural Network 
(aNN), SVM  

radiomics Diagnostic 

Fang et al. 
(2020) 

CT/56 
COVID-19, 
34 other 
types of viral 
pneumonia 
[113] 

2D and 3D/ 
Manually/uAI- 
Discover-NCP 
R001) 

– – DL variance analysis, 
spearman correlation 
analysis, and LASSO 

– DL Prediction 

Tang et al. 
(2020) 

CT/176 
COVID(non- 
severe or 
severe) 

VB-net uAI-Dicover-NCP Infection 
volume, 
ratio of the 
whole lung, 
the volumes 
of GGO 
regions 

ML RF 3-fold cross radiomics Severity 
assessment 

Chen et al. 
(2020) 

CT/51 
COVID-19, 
55 other 
disease 

3D/Automated/ 
UNet++

– – DL UNet++ – DL Detection 

Li et al. (2020) CT/400 
COVID-19, 
1396 
Community 
acquired 
pneumonia, 
and 1173 
non- 
pneumonia 

3D AND 2D/ 
Automated/ 
RestNet50  

– DL RestNet50 + Max 
pooling 

AUC curve DL Diagnostic 

Hongmei et al. 
(2020) 

CT/52 
COVID-19 

3D Slicer 3D Slicer 
(version 4.10.0) 

– ML LR,RF 5-fold cross- 
validation 

DL Prediction 

Zheng et al. 
(2020) 

CT/313 
COVID 
positive, 229 
COVID 
negative 

3D/Automated/ 
UNet 

– – DL DeCoVNet software DeCoVNet DL Detection 

PyRadiomics ML LR – radiomics Detection 

(continued on next page) 
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Table 2 (continued ) 

Reference Modality/ 
Subjects 

Segmentation 
Method 

Feature 
Extraction 

Type of 
Feature 

Feature 
Selection/ 
Derivation 
Methods 

Model training Model 
Validation 

AI-based 
method 

Task 

Huang et al. 
(2020) 

CT/89 
COVID-19, 
92 Non- 
COVID-19 

3D/Manually/ 
Lung Kit 
software (v. 
LK2.2) 

Intensity 
statistics, 
shape 
features, 
GLCM, 
GLSZM, 
GLRLM, 
GLDM, 
NGTDM, 
wavelet 
features 
LoG Filtered 
features 

Juanjuan et al. 
(2020) 

CT/148 
COVID-19 

– – Shape, 
histogram, 
GLCM, 
GLRLM, 
GLSZM, and 
GLDM 

ML LASSO – radiomics Prediction 

Liu et al. (2020) CT/115 
COVID-19 
and 435 non- 
COVID-19 

3D/Manually/ 
itk-SNAP, (v. 
3.4.0) 

PyRadiomics First order 
statistics, 
shape-based 
features 
(3D), GLCM, 
GLRLM, 
GLSZM, and 
GLDM 

ML LASSO AUC radiomics Diagnosis 

Wei et al. 
(2020) 

CT/89 
COVID-19 

3D/Automate/ 
LK2.1 software 
package 

PyRadiomics Histogram, 
GLCM, 
GLSZM, 
GLRLM 

ML multivariate logistic 
regression 
method 

ROC 
analyses 

radiomics Severity 
assessment 

Das et al. (2020) CXR/COVID- 
19 (+), 
pneumonia 
(+) but 
COVID-19 
(− ) 

– – – DL SVM, Random Back 
propagation network, 
Adaptive neuro-fuzzy 
inference system 
Convolutional neural 
networks VGGNet, 
Alexnet, Googlenet 
Inceptionnet V3 

Accuracy, f- 
measure, 
sensitivity, 
specificity, 
and kappa 
statistics 

DL Detection 

Kabid et al. 
(2020) 

CXR/non- 
COVID and 
COVID-19. 

– – – DL Faster R–CNN K-fold cross- 
validation 

DL  

Singh et al. 
(2020) 

CT/D1(233 
COVID-19, 
376 non- 
COVID-19) 
D2(53 
COVID-19) 
D3(58 
COVID-19) 

– Principal 
Component 
Analysis, 
Autoencoder, 
Variance based 
Selector 

– DL VGG16, Deep CNN, 
SVM, ELM, OS-ELM 

AUC Deep 
radiomics 

Detection 

Narin et al. 
(2020) 

CXR/50 
COVID-19, 
50 normal 

– – – DL InceptionV3, 
ResNet50, 
InceptionV2 

5-fold cross 
validation 

DL Detection 

Sethy et al. 
(2020) 

CXR/25 
COVID-19, 
25 normal 

– –  DL AlexNet, 
DenseNet201, 
GoogleNet, 
InceptionV3, 
ResNet18, ResNet50, 
ResNet101, VGG16, 
XceptionNet, 
InceptionNetV2 

Accuracy, 
Sensitivity, 
Specificity, 
False 
positive rate 
(FPR), F1 
Score, MCC 
and Kappa 

DL Detection 

Hemdan et al. 
(2020) 

CXR/25 
COVID-19, 
25 normal 

– – – DL VGG, DenseNet201, 
ResNetV2, Inception, 
InceptionResNetV2, 
Xceptio, MobileNetV2 

ROC DL Diagnostic 

Apostolopoulos 
et al. (2020) 

CXR/224 
COVID-19, 
504 normal 

– – – DL VGG19, MobileNet, 
Inception, Xception, 
InceptionResNet 

10-fold- 
cross- 
validation 

DL Detection 

Tang et al. 
(2020) 

CT/52 
CoVID-19 

3D/ 
automatically/ 
3DSlicer, U-net 

PyRadiomics Shape, 
wavelet 
features 

DL L R, RF 5-fold cross- 
validation 

radiomics Severity 
assessment 

Zhang et al. 
(2021) 

DL a built-in 
feature on 

PyRadiomics First-order, 
shape, 

DL 5-fold cross- 
validation 

radiomics Detection 

(continued on next page) 
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relevant features are extracted directly and automatically from the raw 
pixels of the original CT and CXR images [93–95] (see Table 2). 

Alqudah et al. [96] utilizes SVM and RF for detection of COVID-19 at 
an early stage. They adopted a deep radiomics model for feature 
extraction. Specifically, they extracted features from the fully connected 
layer in a CNN, followed by use of machine learning to combine these 
deep features, to build a model to distinguish between COVID-19 vs. 
non-COVID-19 cases. Ghoshal and Tucker [97] used a Bayesian CNN 
(BCNN) method to distinguish the COVID-19 infection using CXRs. A 
classification accuracy of 90 % was reported. Salman et al. [98] 
employed a trained CNN for identifying the COVID-19 using CXRs. The 
sensitivity and specificity achieved from the model were 100 % and 100 
%, respectively. Farooq and Hafeez [99] conducted a multi-stage fine--
tuning scheme on pre-trained ResNet-50 architecture. The COVI-
DResNet model achieved on accuracy of 96.2 %. Asnaoui et al. [100] 
provided a comparative study on eight different learning techniques for 

the classification of COVID-19 using CXRs. MobileNet-V2 and 
Inception-V3 showed the highest accuracy of 96 % classification among 
the other models. Abbas et al. [101] used a specific deep CNN named as 
Decompose, Transfer, and Compose for diagnosis of COVID-19 utilizing 
CXRs. The accuracy and sensitivity of the suggested model were 95.12 % 
and 97.91 %, respectively. 

3.4. Dimensionality reduction 

Dimensionality reduction strategies, attempt to choose a small subset 
of the most relevant features from the all extracted features by removing 
irrelevant and noisy features. Once large number of features and well- 
curated datasets are available, they can then be used for data mining 
to identify radiomics signature. Feature selection is a significant step to 
avoid overfitting the model, removing non-informative or redundant 
predictors/features from the dataset. It hence reduces the computational 

Table 2 (continued ) 

Reference Modality/ 
Subjects 

Segmentation 
Method 

Feature 
Extraction 

Type of 
Feature 

Feature 
Selection/ 
Derivation 
Methods 

Model training Model 
Validation 

AI-based 
method 

Task 

CT/507 sets 
of Suspected 
COVID [32] 

InferScholar 
platform 

GLCM, 
GLRLM, 
GLSZM, 
NGTDM, 
GLDM 

SVM, multi-layer 
perceptron (MLP), 
logistic LR, XGBoost 

Alqudah et al. 
(2019) 

CXR/48 
COVID-19 
and 23 non- 
COVID-19 

ReLU layer SVM – DL AOCT-NET, SVM, RF AUC Deep 
radiomics 

Detection 

Basu et al. 
(2020) 

CXR/302 
COVID-19 
and 108,948 
normal 

– – – DL AlexNet, VGGNet, 
RestNet 

5-fold cross- 
validation 

DL Severity 
assessment 

Wenli et al. 
(2020) 

CT/99 
COVID-19 
[114] 

Automated/U- 
net  

– ML RF AUC Deep 
radiomics 

Severity 
assessment 

Joon et al. 
(2021) 

CXR/338 
COVID-19 

– – – DL DenseNet-121 AUC DL Prediction  

Fig. 5. A schematic diagram of COVID-19 AI-based analysis workflow, involving different parameters and options for (1) image acquisition, (2) image segmentation, 
(3) extraction of features, (4) dimensionality reduction, (5) ML/DL modeling, and (6) model validation. Only few examples of parameters/features/algorithms 
are mentioned. 
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complexity of the training, and can increase the model’s performance. 
Overall, feature selection is important for proper applicability of the 
model in day-to-day clinical applications. In order to enhance the 
translation of radiomics into clinical practice, highly accurate and reli-
able ML approaches are required. Moreover, the performance of the 
model depends on how the various redundant and non-redundant fea-
tures/variables are handled prior to testing the model. 

The training data is defined as a collection of instances, represented 
by a set of patients, each with a collection of features and a desired 
category label. The classifier evaluates the training data and derives a 
model that can be used to predict the labels from the input features. For 
this process, AI approaches and statistical approaches were employed. 
At the other end, the data mining spectrum are hypothesis-driven 
methods that cluster features in line with information of content. By 
getting used of the advantages of these two approaches, the best models 
can be selected and further emphases in a particular medical context 
and, therefore, well-defined endpoint will be achieved. There are two 
categories of methods for dimensionality reduction: feature selection 
and feature extraction, which we discuss next. The former, extract a 
subset of features from a given set of (large) features. The latter, com-
bines existing features into a reduced number of new features/di-
mensions; e.g. Principal Component Analysis (PCA) [102]. This term 
(“feature extraction”), as we use it here, should not be confused with 
extraction of hand-crafted radiomics features, which can also be referred 
to as feature extraction. In the present use, it is in the context of 
dimensionality reduction that it is used. 

3.4.1. Feature selection 
The feature selection step in Al-based radiomics workflow is the se-

lection of the most relevant data for the respective task. Several steps are 
involved for feature selection based on machine learning algorithms 
and/or on the conventional statistical methods and data visualization. 
The selection process can be as follows: (a) select initial features; (b) 
visualize clusters of highly correlated radiomics metrics; (c) and allow 
selection of one representative feature per correlation cluster (patient 
cohort). The risk of model overfitting is high when the number of fea-
tures in a model are high or the sample size for classification is low. 
Aiming to identify a proper sub-set of features from a given set of 
original features in data mining, feature selection is usually requiring 
pre-processing algorithms (PPA). PPA stages require (a) search strategy 
that utilized some methods to select a subset of features; (b) feature 
subsets utilizing classifiers, quality of the desired sub-set of features can 
be computed. Feature reduction methods are mainly grouped into two 
groups: Supervised and unsupervised. Two sub-categories are 

supervised technique are (1) filter- and (2) wrapper-based methods. 
The filter-based method utilizes the data related specifications to 

assess the merits of the feature subset. The wrapper-based methods 
employ a specific classifier to estimate the significant features. Feature 
selection approaches using special group of filters tend to simulta-
neously select highly predictive but uncorrelated features. One of such 
filter is the Maximum Relevance Minimum Redundancy (MRMR) algo-
rithm, which was first developed for feature selection of microarray 
data. Fu et al. [103] employed MRMR to find out the high correlation 
and low redundancy features from 2 sets of features (radiologists A and 
B) which were obtained to construct the COVID-19 radiomics signature. 

Elsewhere, Li et al. [104] applied the Mann–Whitney U test to 
determine the correlation between features (extracted from 64 CT im-
ages of COVID-19 cases) and severity score. Then, the MRMR algorithm 
utilized to rank features according to their relevance to severity to select 
optimal feature subset. Rafid et al. [105] adopted filter-based and 
wrapper-based (hybrid method) to select the most relevant features. The 
MRMR and Double Input Symmetrical Relevance (in total 1144 features 
were obtained by discrete wavelet transform and CNN) feature selection 
methods along with recurrent feature elimination (RFE) techniques 
were adopted. 

3.4.2. Feature extraction 
Unsupervised techniques for feature reduction are divided into linear 

and nonlinear methods that aim to only keep low number of features. By 
adopting these methods, the new reduced set of features that was 
created from a combination of original features will be feed into the 
analysis. Hence, the original features will be discarded. In other words, 
the features that do not provide additional information will be removed. 
PCA is a multivariate statistical procedure that analyses dependent and 
inter-correlated features and extracts the important information by 
transforming it to a new set of orthogonal variables called principal 
components. A new set of principal components is obtained, each with 
certain variance, while the first principal component would have the 
highest contribution among others [106]. Subsequently, a number of 
important principal components are retained, while the rest are dis-
carded, resulting in dimensionality reduction. 

Rasheed et al. [107] employed PCA to further speed up the learning 
process as well as improve classification accuracy by selecting the highly 
relevant features. The overall reported accuracy without and with PCA 
was 98–100 % for Logistic regression and was 95–98 % for CNN for the 
detection of COVID-19 from CXR images. Khuzani et al. [108] utilized 
the kernel PCA method to reduce the dimensionality of original feature. 
By utilizing these methods, the obtained 64 new synthetic features out of 

Fig. 6. Radiologist and AI (COLI-NET) segmentation for whole lung and lesion segmentation for different stage of COVID-19 patients (from mild to severe).  

Y. Bouchareb et al.                                                                                                                                                                                                                             



Computers in Biology and Medicine 136 (2021) 104665

11

252 features. Attallah et al. [109] conducted a study to diagnose 
COVID-19 infections using CT images. They adopted PCA method on 
deep features. They reported 32 % computational coast reduction for 
analysis as well as accuracy of 94.7 % of accuracy, 95.6 % of sensitivity 
and of 93.7 % of specificity their COVID-19 detection mode. 

4. Performance of radiomics-based methods in COVID-19 studies 

The dominant approaches used in AI are ML and DL, which offer fast, 
automated, decisive strategies to enable improved assessment of COVID- 
19 infections. Using AI techniques, scientists succeeded in extracting 
features from COVID-19 CT and CXR datasets to extract findings that are 
specific and highly sensitive for early COVID-19 detection, prognosis 
and severity scoring. Moreover, ML and DL models have demonstrated 
comparable success to qualified radiologists and substantially increased 
the effectiveness of the radiology clinical practice. The related COVID- 
19 patterns differentiating COVID-19 infection from other lungs in-
fections could be established if pertinent ML and/or DL analysis models 
are developed, trained and properly validated. Fig. 7 provides a 
comprehensive picture and summarises the AI-based methods in the 
context of COVID-19 reviewed in this paper. 

4.1. Using CXR images 

The SVM, as demonstrated by Sethy and Behera [115] is a classifi-
cation method for COVID-19 CXR images compare to others deep 
learning-based methods. For the diagnosis of coronavirus infected pa-
tients, the technique proved to be useful for medical practitioners. For 
detecting COVID-19, ResNet50 + SVM, achieved better accuracy 
compare to FPR, F1 score, MCC, were 95.4 %, 95.5 %, 91.4 % and 90.8 
%, respectively. Also, 115 COVID-19 and 435 non-COVID-19 cases were 
investigated by Liu et al. [116] and used to create a radiomics signature 
utilizing minimum LASSO, main radiomics features extracted from chest 
CT images were selected. The clinical model for the diagnosis of 
COVID-19 pneumonia ROC area of 0.98 and a successful cohort vali-
dation. The sensitivity and precision of the combined model were 85 % 
and 90 % respectively. 

Different pre-trained CNN-based models (ResNet50, ResNet101, 
ResNet152, InceptionV3 and Inception-ResNetV2) were evaluated by 
Narin et al. [117] for the detection of COVID-19 using CXR. The 
pre-trained ResNet50 model provided the highest classification perfor-
mance (96.1 % accuracy for Dataset-1, 99.5 % accuracy for Dataset-2 
and 99.7 % accuracy for Dataset-3) among other four models used in 

the study. The ability of domain extension transfers learning (DETL) to 
detect COVID-19 was demonstrated by Basu et al. [62]. On a related 
large CXR dataset (normal, pneumonia, other illness, and COVID-19), 
they employed DETL, with a pre-trained CNN model. The overall ac-
curacy of the model was found to be 90 %. In this study, Gradient Class 
Activation Map (Grad-CAM) for identifying and visualizing the areas 
where the model focused most during classification. 

A weakly-supervised DL-based software system was tested by Zheng 
et al. [78] to detect COVID-19 using 3D CT images. A pre-trained UNet 
was used for lung region segmentation. The results showed 90 % 
sensitivity and 91 % specificity. The algorithm achieved an accuracy of 
90 % to define COVID-19 and non-COVID groups. Ioannis and Tazani 
[118] extracted features from numerous images of CXR (COVID-19 
disease, common and normal bacterial pneumonia). The findings indi-
cate that DL using CXR can extract essential biomarkers related to 
COVID-19 disease. A 96.8 % accuracy, 98.7 % sensitivity, and 96.5 % 
specificity were reports in this study. 

4.2. Using CT chest scans 

On three separate batches of patients, including 148 patients 
(training sets), 264 patients (validation sets), Xu et al. [119] developed a 
radiomics-based model to create a prognosis prediction model and to 
check the predictive efficiency. They illustrated that the nomogram 
scoring system is a potential predictor for the short-term results of 
COVID-19 with a sensitivity of 81.3 % and specificity of 87.3 % in CT, 
C-reactive protein (CRP) and Radscore. In the independent validation 
datasets, the predictive performance of this model was also validated, 
giving a sensitivity of 88.8 % and specificity of 73 %. Huang et al. [120] 
investigated 181 cases of viral pneumonia grouped into COVID-19 and 
non-COVID-19. The combined models of CT signs and selected features 
showed that discrimination between COVID-19 and non-COVID-19 
cases was better identified compared to the individual 
radiomics-based models. Combining CT signs and Radiomics charac-
teristics achieved sensitivity was 91.9 % and specificity was 85.9 %; and 
accuracy was 88.9 %. 

CT images of 176 COVID-19 patients were analysed by Tang et al. 
[86]. A RF model was trained and showed 87.5 % accuracy, 0.9 and 0.70 
of true positive rate, and true negative rate, respectively for the detec-
tion of COVID-19. Chen et al. [79] studied CT images of 51 COVID-19 
and 55 CT images of other types of diseases. The model achieved a 
per-patient sensitivity of 100 %, and accuracy of 95.3 %, a positive 
prediction value of 84.7 %. Moreover, they reported negative prediction 

Fig. 7. Summary of AI-based methodology in COVID-19 studies.  
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value of 100 %; a per-image sensitivity of 94.4 %, with an accuracy of 
98.9 % in retrospective datasets. Qi et al. [48] analysed radiomics-based 
models based on 6 s-order characteristics that were successful in dis-
tinguishing short-term and long-term hospitalization in patients using 
Logistic Regression-associated pneumonia and Random 
Forest-associated pneumonia in the research datasets, respectively. A 
sensitivity and specificity of 100 % and 89 % was achieved by the lo-
gistic regression model, and similar performance was shown by the RF 
model with a sensitivity and specificity of 75 % and 100 % in the test 
datasets. 

Liu et al. [116] claimed that the decision curve analysis verified the 
clinical usefulness of the COVID-19 radiomics model for detection. Two 
tests were conducted on 115 patients COVID-positive and 435 
COVID-negative ones. In order to distinguish COVID-19 by radiomics 
signature, a clinical model was developed and validated using specific 
data system such as CO-RADS. The model achieved 96 % sensitively 
compared to 75 % sensitivity obtained by the clinical model. Fang et al. 
[85] performed a study on 46 patients with COVID-19 and 29 other 
forms of pneumonia. Of the total lesions, 77 radiomics metrics were 
extracted. Multiple cross-validation was used to pick the primary char-
acteristics after clustering by SVM to create the radiomics signature in 
the experiments. To test model efficiency, the AUC and calibration curve 
were used. The proposed model yielded the AUCs from the training set 
and the testing set of 86.2 % and 82.6 %, respectively. Wei et al. [121] 
retrospectively collected two groups conducted a study which included 
on CT images from 81 COVID-19 patients. Using LK2.1 software, the 
texture features were extracted. To find the characteristics with 
maximum correlation and minimum redundancy, the minimum redun-
dancy and maximum relevance methods were carried out. To compare 
the efficiency of two models, ROC analysis were performed. The AUC 
values was 0.93 % and 0.95 % for textural features and clinical features, 
respectively. 

A prognostic method for predicting poor results in COVID-19 based 
on CT imaging was suggested by Wu et al. [122]. A total of 492 patients 
were classified into (a) the early-phase group (CT scans one week after 
onset of symptoms); (b) the late-phase group (CT scans one week after 
onset of symptoms). The radiomics signature (RadScore software) was 
developed to build the low-pass Gaussian filter, and LASSO reduction 
methods/classification methods. Afterwards, the clinical model and the 
clinic-radiomics signature (CrrScore), was stablished by performing a 
Fine-Gray competing risk regression. They found that in group (a), the 
CrrScore estimated 85 % poorness, and predicted the probability of 
28-day poor results of 86.2 %. In group (b), the RadScore alone achieved 
similar performance to the CrrScore in predicting poor outcome (88.5 
%), and 28-day poor outcome probability (97.6 %). 

5. Clinical impact of AI-based COVID-19 studies 

The first significant challenge in dealing with patients with COVID- 
19 symptoms is to identify and prioritize cases so that the physician 
can isolate infected patients as soon as possible. For COVID-19 cases, a 
triage algorithm needs to prioritize those who require emergency 
medical care, according to the severity of infection. Radiomics models 
may assist radiologists and clinicians in making fast and accurate diag-
nosis and prognosis, to ensure appropriate clinical management and 
resources allocation. Moreover, radiomics models have the potential to 
distinguish COVID-19 from pneumonia caused by other etiologies. The 
major clinical impact highlighted by radiomics-based COVID-19 studies 
were in the areas of: screening of infection, identification and detection, 
prediction of disease progression, and analysis of survival rate. The 
following subsections summarize the most relevant studies for 
screening, diagnosis, prediction, and severity quantification of COVID- 
19 using AI-based methods. 

5.1. Screening 

Screening patients attending emergency departments for COVID-19 
at time of overwhelming outbreak using RT-PCR is challenging pro-
cess as that might take up to 24 h to obtain the results. Screening with 
Chest CT was adopted in many centres across the globe. The screening 
was augmented by using AI-based applications that played a major role 
in regions with acute shortage of imaging professionals’ and Radiolo-
gists. Fang et al. [85] used a SVM-based radiomics method to screen 
COVID-19 infection based on chest CT images from other types of 
pneumonia. This method achieved AUCs of 86 % and 83 % with the 
training and test sets, respectively. Rezaeijo et al. [123] successfully 
assessed the diagnostic value of several ML approaches for screening 
COVID-19. They reported an accuracy range of AUC between 30 % and 
98 % for recursive feature elimination (RFE)+Multinomial Naive Bayes 
(MNB), Rebadging (BAG), and RFE + decision tree (DT) classifiers. They 
also reported an accuracy range of AUC between 30 % and 99 % for 
mutual information (MI)+MNB and RFE + k-nearest neighborhood 
(KNN) classifiers. In their study, the RFE + BAG and RFE + DT classifiers 
achieved the highest prediction accuracy of 98 %, followed by an ac-
curacy of 97 % with MI Gaussian Naive Bayes (GNB) and logistic 
regression (LGR)+DT classifiers. The RFE + KNN classifier used for 
features selection achieved the highest AUC of 99 %, followed by RFE +
BAG and RFE + gradient boosting decision tree classifiers. Chandra et al. 
[124] developed radiomics-based methods that uses a majority 
voting-based classifier to screen COVID-19 from chest X-ray images. 

5.2. Differential diagnosis 

Radiomics features were heavily investigated in an attempt to 
differentiate different types of viral pneumonia or to classify severity of 
COVID-19 pneumonia. A radiomics model combining 8 radiomics fea-
tures and 5 selected clinical variables was constructed and used for the 
diagnosis of COVID-19 pneumonia [116] The combined radiomics 
model achieved a better diagnostic accuracy, compared to CO-RADS 
used by radiologists, with a 85 % sensitivity and 90 % specificity. 
Wang et al. [125] developed a radiomics-feature-based model that was 
significantly associated with the classification of COVID-19 pneumonia 
using a multi-classifier approach. The findings of this study extend the 
understanding of imaging characteristics of COVID-19 pneumonia. 
Moreover, Junior and co-authors [126] demonstrated that radiomics not 
only correlated with the etiologic agent of acute infections but also 
supported short-term risk stratification of COVID-19 patients. Else-
where, Xie et al. [127] developed a non-invasive radiomics model using 
chest CT images for the detection of COVID-19 considering GGO lesions. 
The preliminary results demonstrated that the radiomic model could be 
used as supplementary tool for improving specificity for COVID-19 in a 
population confounded by GGO changes from other etiologies. Tabata-
baei and co-authors [128] performed a preliminary study on CT scans 
using ML methods. The reported results were promising for differenti-
ating COVID-19 and H1N1 influenza. Elsewhere, Guiot et al. [110] 
developed a AI framework to differentiate COVID-19 from other routine 
clinical conditions in a fully automated fashion, hence providing rapid 
accurate diagnosis of patients suspected of COVID-19 infections to 
enable early intervention. 

5.3. Prediction 

Providing an accurate prediction of the evolution of SARS-CoV-2 
infections is expected to facilitate timely implementation of isolation 
procedures and early intervention as well as predicting patient’s clinical 
outcome. Giraudo et al. [129] built a rapid CXR-based radiomics inte-
grated model that incorporated demographics, first-line laboratory 
findings, and clinical findings of positive COVID-19 cases obtained upon 
admission. The model showed that a combination of radiomics and a 
basic inflammatory index obtained at admission can predict ICU 
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admission. According to Gülbay et al. [130] COVID-19 and atypical 
pneumonia-associated GGO lesions and consolidation could be pre-
dicted with high accuracy (80 % in COVID-19 and 81 % in atypical 
pneumonia). Roundness and peripheral location were found to be the 
most effective characteristics for identifying a GGO lesion with 
COVID-19, but were both ineffective in predicting lesions in the 
consolidation stage. The findings of Chaddad et al. [131] demonstrated 
that deep CNNs with transfer learning can predict COVID-19 in CT and 
CXR images. The proposed model could aid radiologists in improving the 
accuracy of their diagnosis and the efficiency of managing COVID-19 
patients. Sinha and Rati [132] employed an AI-based approach to pre-
dict survival in COVID-19-isolated individuals. The 
multi-autoencoders-based model was developed and tested on 5165 
COVID-19 cases before it was validated on 1533 patients who were 
quarantined. The findings identified the key points in the outbreak 
spread, indicating that the models driven by machine intelligence and 
deep learning can be effective in providing a quantitative view of 
epidemical outbreak. The combined model was shown to have an ac-
curacy of 99 %. Yuan et al. [133] reported a risk score-based approach 
that could predict the mortality of COVID-19 patients by more than 12 
days with more than 90 % accuracy across all cohorts. 

5.4. Severity quantification 

Severity quantification is a common measure to assess patients’ 
health condition. A new AI-based method that automatically performs 
3D segmentation and quantifies abnormal CT patterns in COVID-19 (e. 
g., GGO and consolidation) was introduced by Changanti et al. [134]. 
Based on DL and deep reinforcement learning, the method provided 
combined assessments of lung involvement to assess COVID-19 abnor-
malities (percentage of lungs involvement) and the existence of large 
opacities (severity scores). The method offers the potential of a better 
management of patients and clinical resources. Using a commercially 
available DL-based technology, Huang et al. [135] determined that 
quantification of lung opacification in COVID-19 from CT images was 
significantly different among groups with varying clinical severities. 
This method could potentially eliminate subjectivity in the evaluation 
process and follow-up of COVID-19 pulmonary findings. Shen et al. [81] 
performed a retrospective examination on COVID-19 cases based on 
severity score by radiologists. The computer-aided quantification 
showed a statistically significant percentage of lesions in lower lobes 
than the ones in the lower lobes assessed by the radiologists (R = 0.63, P 
< 0.05). On a total of 176 positive COVID-19 CT scans, Tang et al. [86] 
computed 63 features. Their findings revealed that the volume and ratio 
of GGO areas (in relation to the total lung volume) were strongly asso-
ciated with the severity of COVID-19. 

6. Limitations and recommendations for future studies 

While in several studies, imaging-AI based approaches have 
demonstrated significant potential as non-invasive methods for diag-
nosis and prognosis of COVID-19, the field still faces several challenges. 
Technical choices can greatly influence the clinical applicability of AI- 
based methods. Sample size plays an important role in AI-based diag-
nosis and prognostic of COVID-19. Reliable and robust model derivation 
and validation efforts reduce risks of misrepresentation and false dis-
coveries caused by small sample sizes. Increasing sample sizes through 
data collection from several clinical centres, coupled with robust AI 
derivation and validation efforts, may more reliable and generalizable 
outcomes. Some recent reports are less enthusiastic about AI research in 
the management of COVID-19 disease [136,137]. Future studies should 
address the concerns raised. Some potential avenues are discussed 
below. 

6.1. Sample size and data collection 

Translation of AI-based methods to routine clinical practice is 
hampered by the proper validation of existing research studies. Insuf-
ficient data due to small sample sizes and toy datasets for different types 
or stages of disease or infection (e.g. mycoplasma infections) can induce 
significant selection bias as well as imbalanced COVID-19 dataset [63, 
138]. A study on a subgroup of early COVID-19 paediatric patients was 
not successful due to lack of sufficient CT scans [28]. 

Five common categories of COVID-19 severity based on total lungs 
involvements (LI) (score 0: 0 % LI; score 1: 5 % LI; score 2: 5%–25 % LI; 
score 3: 26%–50 % LI; score 4: 51%–75 % LI; as well as score 5: 75 % 
lobar involvement) have been considered. The severity scores are clas-
sified as negative, moderate, non-severe, critical and extreme [139]. 
Elsewhere, given small sample size of COVID-19 paediatric patients 
were less in some of these categories, only two categories were examined 
[42]. A solution is to use pertained networks (transfer learning) followed 
by fine-tuning using COVID-19 datasets. However, employing 
pre-trained networks (commonly for non-medical applications) in real 
medical applications is still challenging. 

For different types of pneumonia only one case was reported and 
therefore, the characteristics comparison between COVID-19 and other 
types of pneumonia failed [26,28,37]. Overall, for proper generaliz-
ability of models, multi-centric, large datasets are required. Further, 
using appropriate data augmentation, transfer learning based on other 
COVID-19 models, and federated learning frameworks, the accuracy of 
the models might be enhanced [25]. To attain adequate balance classes 
for AI analysis, some techniques such as modified loss functions or 
resampling utilizing Synthetic Minority Oversampling Technique 
(SMOT), down-sampling and up-sampling might be helpful. 

6.2. Imaging protocols (non-standard) 

Apart from the issue of sample size, imaging protocols are often not 
standardized for such studies. The effect of these settings on radiomics 
features was investigated to minimize their influence by eliminating 
features that are sensitive (i.e. not reproducible) to those parameters 
[140]. Different brands of imaging scanners are available in the market, 
rendering identical performances and standard protocols of scanning for 
COVID-19 patients highly problematic across different hospitals and 
imaging centres. Alternatively, harmonization of acquired imaging 
datasets might be helpful for data collection at different centres [141]. 

6.3. Imaging and non-imaging factors 

It was reported that the impact of the virus on the lungs is highly 
related to the host factor [142]. The CT data on its own is not sufficient 
to identify the types of viral pneumonia. A study stated that clinical and 
clinic-radiomics combined model results in better diagnosis of 
COVID-19 pneumonia compare to COVID-19 reporting and data system 
(CO-RADS) only model [116]. A recent study revealed that AI-based 
prediction modeling using CXR radiographs was insufficient unless 
diagnostic test results such as RT-PCR are also available [143]. Hence, 
clinical features and laboratory examination data are required to be 
investigated in addition to imaging features [26]. In other words, 
AI-based models should not merely rely on images, and combination of 
imaging data with clinical information enhances model applicability. 

6.4. Segmentation methods 

Segmentation can significantly impact feature extraction and hence 
the classification and clinical outcomes. The expertise of the operator in 
semi-automated or manual methods is a key explicit feature and may 
dictate the occurrence of the outcomes. Chest imaging scans of COVID- 
19 infected patients that have small ground-glass lesions could be missed 
when the ROI is automatically delineated using existing methods. 
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However, fully automated segmentation methods based on deep 
learning have the potential to replace less automated methods, if large, 
accurate reference truth datasets are generated for training. Overall, 3D 
segmentation networks and the adoption of precise ground-truth an-
notated by radiologists is desirable and more efficient for explicit 
radiomics feature extraction and analysis [25]. 

Meticulous segmentation of COVID-19 images makes extraction of 
the radiomics matrix a great challenge for accurate labelling and clus-
tering of regions [91]. Nevertheless, AI-based analysis is used on a va-
riety of datasets, including labelled, non-labelled, mixture or small 
labelled and huge number of non-labelled data. Depending on the ob-
jectives and expected outcomes of the studies, the lack of accurate 
segmentation models can be compensated for by employing deep 
learning methods. In particular, manual segmentation can be replaced 
utilizing large training datasets, neural networks and evaluation algo-
rithms. The extracted features can be hence identified to facilitate rapid 
and more accurate diagnosis as well as timely management of COVID-19 
patients. 

6.5. Availability of COVID-19 databases 

Sharing COVID-19 scan details in publications that focus on CT and 
CXR datasets has been critical for COVID-19 first-line diagnosis during 
the early stages of the pandemic [144]. Later, the availability of free 
online COVID-19 CT and CXR images, contributed to proliferation of AI 
approaches and high enthusiasm about fostering diagnosis and prog-
nosis for COVID-19 patients [29]. Subsequently, number of AI-based 
COVID-19 publications has increased rapidly. Public datasets vary 
remarkably in terms of ancillary datasets that directly enhance the 
performance of the AI models. The majority of datasets are still private, 
and publications based on public datasets are neither comprehensive 
enough nor clinically useful [136]. To overcome this hurdle in the 
application of AI-based COVID-19 studies, there is significant need for 
ongoing construction and expansion of COVID-19 database from care-
fully curated imaging and non-imaging data. 

7. Conclusion 

Prompt assessment of COVID-19 can lead to improved management 
and control of potential transmission of the virus. Our review reveals the 
prevalence of AI techniques as applied to COVID-19 CT/CXR images to 
enhance the diagnosis and prognosis of COVID-19 pneumonia. Devel-
oping accurate and highly sensitive AI-based models for clinical 
assessment and follow-up of COVID-19 patients is critical. AI-based 
approaches consist of a chain of key steps towards proper identifica-
tion of AI-based signatures. Opting for systematic development and 
assessment of techniques will be critical towards accurate, reliable and 
generalizable AI-based models. Our review also sheds light on the 
different aspects of AI-based analysis workflows in COVID-19 infections. 
The findings and recommendations can guide future studies to develop 
alternative methods and increase the accuracy and sensitivity of AI- 
based models. Moreover, there is prospect to convince clinical deci-
sion makers in establishing CXR/CT-based assessment of COVID-19 
pneumonia as an alternative diagnostic pathway. Overall, we have 
also elaborated upon the full chain of AI-based workflows from image 
acquisition methods, through segmentation, feature extraction and 
classification methods as well as model development and validation. 
Moreover, the challenges and limitations of current COVID-19 AI-based 
studies were highlighted to help initiate further efforts to overcome 
current limitations. 
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